Skip to main content

Biological Strategies of Lichen Symbionts to the Toxicity of Lead (Pb)

Part of the Radionuclides and Heavy Metals in the Environment book series (RHME)

Abstract

Lichens are symbiotic organisms, originated by mutualistic associations of heterotrophic fungi (mycobiont), photosynthetic partners (photobionts) which can be either cyanobacteria (cyanobionts) or green microalgae (phycobionts), and bacterial consortia. They are poikilohydric organisms without cuticles or nutrient absorption organs adapted to anhydrobiosis. They present a large range of tolerance to abiotic stress (UV radiation, extreme temperatures, high salinity, mineral excess, etc.) and prosper all around the Earth, especially in harsh habitats, including Antarctica and warm deserts. Their biodiversity is widely used as a bioindicator of environmental quality due to this diversity of tolerance in different species, and they are included in air Pb monitoring programmes worldwide. Their ability to bioaccumulate environmental substances, including some air pollutants and heavy metals, makes them excellent passive biomonitors of Pb. Heavy metal tolerance is related to diverse mechanisms: cell walls and exclusion systems (such as extracellular polymeric substances), intracellular chelators and an extraordinary antioxidant and repair capacity. But recent data show that the most powerful mechanism is related with the upregulation of mutual systems by symbiosis.

Keywords

  • Pb
  • Lichens
  • Bioindicators
  • Biomonitors
  • Tolerance
  • Microalgae

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-21638-2_9
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-21638-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 1

References

  • Agnan Y, Probst A, Séjalon-Delmas N (2017) Evaluation of lichen species resistance to atmospheric metal pollution by coupling diversity and bioaccumulation approaches: a new bioindication scale for French forested areas. Ecol Indic 72:99–110

    CAS  CrossRef  Google Scholar 

  • Agnan Y, Séjalon-Delmas N, Claustres A, Probst A (2015) Investigation of spatial and temporal metal atmospheric deposition in France through lichen and moss bioaccumulation over one century. Science of The Total Environment 529:285–296

    Google Scholar 

  • Ahmadjian V (1993) The lichen symbiosis. Wiley, New York

    Google Scholar 

  • Ahmadjian V (1995) Lichens are more important than you think. Bioscience 45:124–124

    CrossRef  Google Scholar 

  • Álvarez R, del Hoyo A, García-Breijo F, Reig-Armiñana J, del Campo EM, Guéra A, Barreno E, Casano LM (2012) Different strategies to achieve Pb-tolerance by the two Trebouxia algae coexisting in the lichen Ramalina farinacea. J Plant Physiol 169:1797–1806

    CrossRef  CAS  Google Scholar 

  • Álvarez R, del Hoyo A, Díaz-Rodríguez C, Coello AJ, del Campo EM, Barreno E, Catalá M, Casano LM (2015) Lichen rehydration in heavy metal-polluted environments: Pb modulates the oxidative response of both Ramalina farinacea Thalli and its isolated microalgae. Microb Ecol 69:698–709

    CrossRef  CAS  Google Scholar 

  • Arhoun M, Barreno E, Ramis-Ramos G (2000) Releasing rates of inorganic ions in lichens monitored by capillary zone electrophoresis as indicators of atmospheric pollution. Crypt Mycol 21:275–289

    CrossRef  Google Scholar 

  • Armstrong RA (2017) Adaptation of lichens to extreme conditions. In: Shukla V, Kumar S, Kumar N (eds) Plant adaptation strategies in changing environment. Springer, Singapore, pp 1–27

    Google Scholar 

  • Aschenbrenner IA, Cernava T, Berg G, Grube M (2016) Understanding microbial multi-species symbioses. Front Microbiol 7:1–9

    CrossRef  Google Scholar 

  • Augusto S, Máguas C, Matos J, Pereira MJ, Branquinho C (2010) Lichens as an integrating tool for monitoring PAH atmospheric deposition: a comparison with soil, air and pine needles. Environ Pollut 158:483–489

    CAS  CrossRef  Google Scholar 

  • Bačkor M, Loppi S (2009) Interactions of lichens with heavy metals. Biol Plant 53:214–222

    CrossRef  CAS  Google Scholar 

  • Bačkor M, Pawlik-Skowrońska B, Tomko J, Budová J, Sanità di Toppi L (2006) Response to copper stress in aposymbiotically grown lichen mycobiont Cladonia cristatella: uptake, viability, ergosterol and production of non-protein thiols. Mycol Res 110:994–999

    CrossRef  CAS  Google Scholar 

  • Bačkor M, Pawlik-Skowrońska B, Budová J, Skowroński T (2007) Response to copper and cadmium stress in wild-type and copper tolerant strains of the lichen alga Trebouxia erici: Metal accumulation, toxicity and non-protein thiols. Plant Growth Regul 52:17–27

    CrossRef  CAS  Google Scholar 

  • Bačkor M, Peksa O, Škaloud P, Bačkorová M (2010) Photobiont diversity in lichens from metal-rich substrata based on ITS rDNA sequences. Ecotoxicol Environ Saf 73:603–612

    CrossRef  CAS  Google Scholar 

  • Bačkor M, Péli ER, Vantová I (2011) Copper tolerance in the macrolichens Cladonia furcata and Cladonia arbuscula subsp. mitis is constitutive rather than inducible. Chemosphere 85:106–113

    Google Scholar 

  • Bajpai R, Semwal M, Singh CP (2018) Suitability of lichens to monitor climate change. Crypto Biodiver Assess, 182–188

    Google Scholar 

  • Bargagli R (1998) Trace elements in terrestrial plants: an ecophysiological approach to biomonitoring and biorecovery. Springer, Berlin

    Google Scholar 

  • Bari A, Rosso A, Minciardi MR, Troiani F, Piervittori R (2001) Analysis of heavy metals in atmospheric particulates in relation to their bioaccumulation in explanted Pseudevernia furfurea thalli. Environ Monit Assess 69:205-220

    Google Scholar 

  • Barreno E (2013) Life is symbiosis. In: Chica C (ed) Once upon a time Lynn Margulis: a portrait of Lynn Margulis by colleagues and friends. Ed. Septimus, Barcelona, pp 56–60

    Google Scholar 

  • Beck A (1999) Photobiont inventory of a lichen community growing on heavy-metal-rich rock. Lichenologist 31:501–510

    CrossRef  Google Scholar 

  • Beckett RP, Mayaba N, Minibayeva FV, Alyabyev AJ (2005) Hardening by partial dehydration and ABA increase desiccation tolerance in the cyanobacterial lichen Peltigera polydactylon. Ann Bot 96:109–115

    CAS  CrossRef  Google Scholar 

  • Beckett RP, Kranner I, Minibayeva FV (2008) Lichen biology. Stress physiology and the symbiosis. Cambridge University Press, New York

    Google Scholar 

  • Berganimini A, Scheidegger C, Stofer S, Carvalho P, Davey S, Dietrich M, Dubs F, Farks E, Groner U, Karkkainen K, Keller C, Lokos L, Lommi S, Maguas C, Mitchell R, Pinho P, Richo J, Aragon G, Truscott AM, Wolseley P, Watt A (2005) Performance of macrolichens and lichen genera as indicators of lichen species richness and composition. Conserv Biol 19:1051–1062

    Google Scholar 

  • Bérmudez GMA, Rodríguez JH, Pignata ML (2009) Comparison of the air pollution biomonitoring ability of three Tillandsia species and the lichen Ramalina celastri in Argentina. Environmental Research 109 (1):6–14

    Google Scholar 

  • Bollhöfer A, Rosman KJ (2002) The temporal stability in lead isotopic signatures at selected sites in the Southern and Northern Hemispheres. Geochim Cosmochim Acta 66:1375–1386

    CrossRef  Google Scholar 

  • Bosch-Roig P, Barca D, Crisci GM, Lalli C (2013) Lichens as bioindicators of atmospheric heavy metal deposition in Valencia, Spain. J Atmos Chem 70:373–388

    CAS  CrossRef  Google Scholar 

  • Branquinho C, Brown DH (1994) A method for studying the cellular location of lead in lichens. Lichenol 26:83–90

    CrossRef  Google Scholar 

  • Branquinho C, Brown DH, Máguas C, Catarino F (1997) Lead (Pb) uptake and its effects on membrane integrity and chlorophyll fluorescence in different lichen species. Environ Exp Bot 37:95–105

    CAS  CrossRef  Google Scholar 

  • Branquinho C, Catarino F, Brown DH, Pereira MJ, Soares A (1999) Improving the use of lichens as biomonitors of atmospheric metal pollution. Sci Total Environ 232:67–77

    CAS  CrossRef  Google Scholar 

  • Brown DH, Beckett RP (1983) Differential sensitivity of lichens to heavy metals. Ann Bot 52:51–57

    CAS  CrossRef  Google Scholar 

  • Calabrese EJ (2008) Hormesis: why it is important to toxicology and toxicologists. Environ Toxicol Chem 27:1451–1474

    CAS  CrossRef  Google Scholar 

  • Calabrese EJ (2014) Hormesis: a fundamental concept in biology. Microb Cell 1:1–5

    CrossRef  Google Scholar 

  • Calabrese EJ, Blain RB (2009) Hormesis and plant biology. Environ Pollut 157:42–48

    CAS  CrossRef  Google Scholar 

  • Calatayud A, Abadía Á, Abadía J, Barreno E (1999) Effects of ascorbate feeding on chlorophyll fluorescence and xanthophyll cycle components in the lichen Parmelia quercina (Willd.) Vainio exposed to atmospheric pollutants. Physiol Plant 105:679–684

    Google Scholar 

  • Calatayud A, Deltoro VI, Barreno E, Del Valle-Tascon S (1997) Changes in in vivo chlorophyll fluorescence quenching in lichen thalli as a function of water content and suggestion of zeaxanthin-associated photoprotection. Physiol Plant 101:93–102

    CAS  CrossRef  Google Scholar 

  • del Campo EM, Gimeno J, de Nova JPG, Casano LM, Gasulla F, Breijo FJB, Arminana JR, Barreno E (2010) South European populations of Ramalina farinacea (L.) Ach. share different Trebouxia algae. In: Nash TH III, Geiser L, McCune B (eds) Biology of lichens: ecology, environmental monitoring, systematics and cyber applications. E. Schweizerbart Science Publishers, Stuttgart, Germany, pp 247–256

    Google Scholar 

  • del Campo EM, Catalá S, Gimeno J, Del Hoyo A, Martinez-Alberola F, Casano LM, Grube M, Barreno E (2013) The genetic structure of the cosmopolitan three-partner lichen Ramalina farinacea evidences the concerted diversification of symbionts. FEMS Microbiol Ecol 83:310–323

    CrossRef  CAS  Google Scholar 

  • Carreras HA, Pignata ML, (2001) Comparison among air pollutants, meteorological conditions and some chemical parameters in the transplanted lichen Usnea amblyoclada. Environmental Pollution 111:45–52

    Google Scholar 

  • Carreras HA, Pignata ML (2002) Biomonitoring of heavy metals and air quality in Cordoba City, Argentina, using transplanted lichens. Environ Pollut 117:77–87

    CAS  CrossRef  Google Scholar 

  • Casano LM, Del Campo EM, García-Breijo FJ, Reig-Armiñana J, Gasulla F, Del Hoyo A, Guéra A, Barreno E (2011) Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus competition? Environ Microbiol 13:806–818

    CAS  CrossRef  Google Scholar 

  • Casano LM, Braga MR, Álvarez R, Del Campo EM, Barreno E (2015) Differences in the cell walls and extracellular polymers of the two Trebouxia microalgae coexisting in the lichen Ramalina farinacea are consistent with their distinct capacity to immobilize extracellular Pb. Plant Sci 236:195–204

    CAS  CrossRef  Google Scholar 

  • Catalá M, Gasulla F, Pradas del Real AE, García-Breijo F, Reig-Arminana J, Barreno E (2010a) Nitric oxide is involved in oxidative stress during rehydration of Ramalina farinacea (L.) Ach. in the presence of the oxidative air pollutant cumene hydroperoxide. In: Nash T III, Geiser L, McCune B (eds) Biology of lichens: ecology, environmental monitoring, systematics and cyber applications. E. Schweizerbart Science Publishers, Stuttgart, pp 87–92

    Google Scholar 

  • Catalá M, Gasulla F, Pradas del Real AE, García-Breijo F, Reig-Armiñana J, Barreno E (2010b) Fungal-associated NO is involved in the regulation of oxidative stress during rehydration in lichen symbiosis. BMC Microbiol 10:297

    CrossRef  CAS  Google Scholar 

  • Catalá M, Gasulla F, Pradas Del Real AE, García-Breijo F, Reig-Armiñana J, Barreno E (2013) The organic air pollutant cumene hydroperoxide interferes with NO antioxidant role in rehydrating lichen. Environ Pollut 179:277–284

    CrossRef  CAS  Google Scholar 

  • Cernava T, Erlacher A, Aschenbrenner IA, Krug L, Lassek C, Riedel K, Grube M, Berg G (2017) Deciphering functional diversification within the lichen microbiota by meta-omics. Microbiome 5:82

    CrossRef  Google Scholar 

  • Chettri MK, Sawidis T (1997) Impact of heavy metals on water loss from lichen thalli. Ecotoxicol Environ Saf 37:103–111

    CAS  CrossRef  Google Scholar 

  • Chettri MK, Cook CM, Vardaka E, Sawidis T, Lanaras T (1998) The effect of Cu, Zn and Pb on the chlorophyll content of the lichens Cladonia convoluta and Cladonia rangiformis. Environ Exp Bot 39:1–10

    CAS  CrossRef  Google Scholar 

  • Chiva S, Garrido‐Benavent I, Moya P, Molins A, Barreno E (2019) How did terricolous fungi originate in the Mediterranean region? A case study with a gypsicolous lichenized species. Journal of Biogeography 46:515–525

    Google Scholar 

  • Cislaghi C, Nimis PL (1997) Lichens, air pollution and lung cancer. Nature 387:463–464

    CAS  CrossRef  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    CAS  CrossRef  Google Scholar 

  • Conti ME, Cecchetti G (2001) Biological monitoring: lichens as bioindicators of air pollution assessment: a review. Environ Pollut 114:471–492

    CAS  CrossRef  Google Scholar 

  • Cumming G, Fidler F, Vaux DL (2007) Error bars in experimental biology. J Cell Biol 177:7–11

    CAS  CrossRef  Google Scholar 

  • Delmail D, Grube M, Parrot D, Cook-Moreau J, Boustie J, Labrousse P, Tomasi S (2013) Halotolerance in lichens: symbiotic coalition against salt stress. In: Prasad M (ed) Ecophysiology and responses of plants under salt stress. Springer, New York, pp 115–148

    CrossRef  Google Scholar 

  • Dzubaj A, Backor M, Tomko J, Peli E, Tuba Z (2008) Tolerance of the lichen Xanthoria parietina (L.) Th. Fr. to metal stress. Ecotoxicol Environ Saf 70:319–326

    CAS  CrossRef  Google Scholar 

  • Edwards HGM, Rusself NC, Seaward MRD (1997) Calcium oxalate in lichen biodeterioration FT-Raman spectroscopy. Spectrochim Acta Part A Mol Biomol Spectros 53:99–105

    Google Scholar 

  • Eldridge DJ, Delgado-Baquerizo M (2018) The influence of climatic legacies on the distribution of dryland biocrust communities. Glob Chang Biol 25:327–336

    CrossRef  Google Scholar 

  • Ellis CJ, Coppins BJ (2009) Quantifying the role of multiple landscape-scale drivers controlling epiphyte composition and richness in a conservation priority habitat (Juniper scrub). Biol Conserv 142:1291–1301

    CrossRef  Google Scholar 

  • Expósito JR, Coello AJ, Barreno E, Casano LM, Catalá M (2019) Endogenous NO is involved in dissimilar responses to rehydration and Pb(NO3)2 in Ramalina farinacea thalli and its isolated phycobionts. Microbial ecology (in press).

    Google Scholar 

  • Feuerer T, Hawksworth DL (2007) Biodiversity of lichens, including a world-wide analysis of checklist data based on Takhtajan’s floristic regions. Biodiversity and Conservation 16:85–98

    Google Scholar 

  • Firdous S, Khan S, Dar M, Shaheen H, Habib T, Saifullah T (2017) Diversity and distribution of lichens in different ecological zones of Western Himalayas Pakistan. Bang J Bot 46:805–811

    Google Scholar 

  • García-Breijo F, Reig-Armiñana J, Salvá G, Vazquez VM, Barreneno E (2010) El liquen Ramalina farinacea (L.) Ach. en Asturias. Estructura de talos e identificación molecular de los dos ficobiontes de Trebouxia que coexisten. Boletín Ciencias Nat RIDEA 51:325–336

    Google Scholar 

  • Garty J (2010) Biomonitoring atmospheric heavy metals with lichens: theory and application. CRC Crit Rev Plant Sci 20:309–371

    CrossRef  Google Scholar 

  • Garty J, Fuchs C, (1982) Heavy metals in the lichen Ramalina duriaei transplanted in biomonitoring stations. Water, Air, and Soil Pollution 17:175–183.

    Google Scholar 

  • Garty J, Theiss HB (1990) The localization of lead in the lichen Ramalina duriaei (De Not.) Bagl. Bot Acta 103:311–314

    CAS  CrossRef  Google Scholar 

  • Garty J, Ronen R, Galun M (1985) Correlation between chlorophyll degradation and the amount of some elements in the lichen Ramalina duriaei (de not.) Jatta. Environ Exp Bot 25:67–74

    CAS  CrossRef  Google Scholar 

  • Garty J, Karary Y, Harel J (1992) Effect of low pH, heavy metals and anions on chlorophyll degradation in the lichen Ramalina duriaei (de not.) bagl. Environ Exp Bot 32:229–241

    CAS  CrossRef  Google Scholar 

  • Garty J, Karary Y, Harel J (1993) The impact of air pollution on the integrity of cell membranes and chlorophyll in the lichen Ramalina duriaei (de not.) bagl. transplanted to industrial sites in Israel. Arch Environ Contam Toxicol 24:455–460

    CAS  CrossRef  Google Scholar 

  • Garty J, Cohen Y, Kloog N, Karnieli A (1997) Effects of air pollution on cell membrane integrity, spectral reflectance and metal and sulfur concentrations in lichens. Environ Toxicol Chem 16:1396–1402

    CAS  CrossRef  Google Scholar 

  • Garty J, Tomer S, Levin T, Lehr H (2003) Lichens as biomonitors around a coal-fired power station in Israel. Environ Res 91:186–198

    CAS  CrossRef  Google Scholar 

  • Gasulla F, De Nova PG, Esteban-Carrasco A, Zapata JM, Barreno E, Guéra A (2009) Dehydration rate and time of desiccation affect recovery of the lichenic algae Trebouxia erici: alternative and classical protective mechanisms. Planta 231:195–208

    CAS  CrossRef  Google Scholar 

  • Geiser LH, Neitlich PN (2007) Air pollution and climate gradients in western Oregon and Washington indicated by epiphytic macrolichens. Environ Pollut 145:203–218

    CAS  CrossRef  Google Scholar 

  • Giordani P (2007) Is the diversity of epiphytic lichens a reliable indicator of air pollution? A case study from Italy. Environ Pollut 146:317–323

    CAS  CrossRef  Google Scholar 

  • Giordani P, Brunialti G, Alleteo D (2002) Effects of atmospheric pollution on lichen biodiversity (LB) in a Mediterranean region (Liguria, northwest Italy). Environ Pollut 118:53–64

    CAS  CrossRef  Google Scholar 

  • Giordani P, Calatayud V, Stofer S, Seidling W, Granke O, Fischer R (2014) Detecting the nitrogen critical loads on European forests by means of epiphytic lichens. A signal-to-noise evaluation. For Ecol Manage 311:29–40

    CrossRef  Google Scholar 

  • González CM and Pignata ML (1994) The influence of air pollution on soluble proteins, chlorophyll degradation, MDA, sulphur and heavy metals in a transplanted lichen. Chem. and Ecol. 9:105–113

    Google Scholar 

  • Goyal R, Seaward MRD (1981) Metal uptake in terricolous lichens:I. Metal localization within the thallus. New Phytol 89:631–645

    CAS  CrossRef  Google Scholar 

  • Goyal R, Seaward MRD (1982) Metal uptake in terricolous lichens: II. Effects on the morphology of Peltigera canina and Peltigera rufescens. New Phytol 90:73–84

    CAS  CrossRef  Google Scholar 

  • Green TGA, Sancho LG, Pintado A (2011) Ecophysiology of desiccation/rehydration cycles in mosses and lichens. In: Lüttge U, Beck E, Bartels D (eds) Plant desiccation tolerance. Ecological studies (analysis and synthesis), vol 215. Springer, Heidelberg

    Google Scholar 

  • Gurbanov R, Unal D (2019) The biomolecular alterations in Cladonia convoluta in response to lead exposure. Spectrosc Lett 51:563–570

    CrossRef  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. doi: https://doi.org/10.1093/acprof:oso/9780198717478.001.0001

  • Hasegawa PM, Bressan RA (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    CAS  CrossRef  Google Scholar 

  • Hauck M, Jurgens SR, Willenbruch K, Huneck S, Leuschner C (2009a) Dissociation and metal-binding characteristics of yellow lichen substances suggest a relationship with site preferences of lichens. Ann Bot 103:13–22

    CAS  CrossRef  Google Scholar 

  • Hauck M, Willenbruch K, Leuschner C (2009b) Lichen substances prevent lichens from nutrient deficiency. J Chem Ecol 35:71–73

    CAS  CrossRef  Google Scholar 

  • Hauck M, Juergens SR, Leuschner C (2010) Norstictic acid: correlations between its physico-chemical characteristics and ecological preferences of lichens producing this depsidone. Environ Exp Bot 68:309–313

    CAS  CrossRef  Google Scholar 

  • Hawksworth DL, Rose F (1970) Qualitative scale for estimating sulphur dioxide air pollution in England and wales using epiphytic lichens. Nature 227:145–148

    CAS  CrossRef  Google Scholar 

  • Herzig R, Liebendorfer L, Urech M, Ammann K, Cuecheva M, Landolt W (1990) Lichens as biological indicators of air-pollution in Switzerland—passive biomonitoring as a part of an integrated measuring system for monitoring air-pollution. Elem Conc Cadasters Ecosyst 35:43–57

    Google Scholar 

  • Högnabba F (2006) Molecular phylogeny of the genus Stereocaulon (Stereocaulaceae, lichenized Ascomycetes). Mycol Res 110:1080–1092

    CrossRef  CAS  Google Scholar 

  • Honegger R (1991) Functional aspects of the lichen symbiosis. Annu Rev Plant Physiol Plant Mol Biol 42:553–578

    CAS  CrossRef  Google Scholar 

  • Honegger R (1998) The lichen symbiosis—what is so spectacular about it? Lichenologist 30:193–212

    CrossRef  Google Scholar 

  • del Hoyo A, Álvarez R, del Campo EM et al (2011) Oxidative stress induces distinct physiological responses in the two Trebouxia phycobionts of the lichen Ramalina farinacea. Ann Bot 107:109–118

    CrossRef  CAS  Google Scholar 

  • Jafarnezhad-Moziraji Z, Saeidi-Sar S, Dehpour AA, Masoudian N (2017) Protective effects of exogenous nitric oxide against lead toxicity in Lemon balm (Melissa officinalis L.). Appl Ecol Environ Res 15:1605–1621

    CrossRef  Google Scholar 

  • Kaur G, Singh HP, Batish DR, Mahajan P, Kohli RK, Rishi V (2015) Exogenous nitric oxide (NO) interferes with lead (Pb)-induced toxicity by detoxifying reactive oxygen species in hydroponically grown wheat (Triticum aestivum) roots. PLoS One 10(9):e0138713

    CrossRef  CAS  Google Scholar 

  • Kinalioǧlu K, Horuz A, Kutbay HG, Bilgin A, Yalcin E (2006) Accumulation of some heavy metals in lichens in Giresun city, Turkey. Ekologia 25:306–313

    Google Scholar 

  • Kirk P, Cannon P, David J, Stalpers J (2008) Dictionary of the fungi, 10th edn. CABI Bioscience, United Kingdom

    Google Scholar 

  • Koch NM, Matos P, Branquinho C, Pinho P, Lucheta F, de Azevedo Martins SM, Ferrao Vargas VM (2019) Selecting lichen functional traits as ecological indicators of the effects of urban environment. Sci Total Environ 654:705–713

    CAS  CrossRef  Google Scholar 

  • Komárek M, Ettler V, Chrastný V, Mihaljevič M (2008) Lead isotopes in environmental sciences: a review. Environ Int 34:562–577

    CrossRef  CAS  Google Scholar 

  • Kováčik J, Klejdus B, Babula P, Hedbavny J (2015) Nitric oxide donor modulates cadmium-induced physiological and metabolic changes in the green alga Coccomyxa subellipsoidea. Algal Res 8:45–52

    CrossRef  Google Scholar 

  • Kováčik J, Rotková G, Bujdoš M, Babula P, Peterková V, Matúš P (2017) Ascorbic acid protects Coccomyxa subellipsoidea against metal toxicity through modulation of ROS/NO balance and metal uptake. J Hazard Mater 339:200–207

    CrossRef  CAS  Google Scholar 

  • Kováčik J, Dresler S, Babula P (2018a) Metabolic responses of terrestrial macrolichens to nickel. Plant Physiol Biochem 127:32–38

    CrossRef  CAS  Google Scholar 

  • Kováčik J, Dresler S, Peterková V, Babula P (2018b) Metal-induced oxidative stress in terrestrial macrolichens. Chemosphere 203:402–409

    CrossRef  CAS  Google Scholar 

  • Kováčik J, Dresler S, Micalizzi G, Babula P, Hladky J, Mondello L (2019) Nitric oxide affects cadmium-induced changes in the lichen Ramalina farinacea. Nitric Oxide 83:11–18

    CrossRef  CAS  Google Scholar 

  • Kranner I, Birtic S (2005) A modulating role for antioxidants in desiccation tolerance. Integr Comp Biol 45:734–740

    CAS  CrossRef  Google Scholar 

  • Kranner I, Cram WJ, Zorn M, Wornik S, Yoshimura I, Stabentheiner E, Pfeifhofer HW (2005) Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proc Natl Acad Sci U S A 102:3141–3146

    CAS  CrossRef  Google Scholar 

  • Kranner I, Beckett R, Hochman A, Nash TH (2008) Desiccation-tolerance in lichens: a review. Bryologist 111:576–593

    CrossRef  Google Scholar 

  • Laaksovirta K, Olkkonen H, Alakuijala P (1976) Observations on the lead content of lichen and bark adjacent to a highway in Southern Finland. Environ Pollut 11:247–255

    CAS  CrossRef  Google Scholar 

  • Loppi S, Bargagli R (1996) Lichen biomonitoring of trace elements in a geothermal area (central Italy). Water Air Soil Pollut 88:177–187

    CAS  Google Scholar 

  • Loppi S, Frati L (2006) Lichen diversity and lichen transplants as monitors of air pollution in a rural area of central Italy. Environ Monit Assess 114:361–375

    CAS  CrossRef  Google Scholar 

  • Loppi S, Putortì E, Pirintsos SA, De Dominicis V (2000) Accumulation of heavy metals in epiphytic lichens near a municipal solid waste incinerator (central Italy). Environ Monit Assess 61:361–371

    CAS  CrossRef  Google Scholar 

  • Lücking R, Hodkinson BP, Leavitt SD (2016) The 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota approaching one thousand genera. Bryologist 119:361–416

    CrossRef  Google Scholar 

  • Margulis L, Barreno E (2003) Looking at lichens. Bioscience 53:776

    CrossRef  Google Scholar 

  • Markert B (1993) Interelement correlations detectable in plant samples based on data from reference materials and highly accurate research samples. Fresenius J Anal Chem 345:318–322

    CAS  CrossRef  Google Scholar 

  • McCune B, Dey J, Peck J, Heiman K, Will Wolf S (1997) Regional gradients in lichen communities of the Southeast United States. Bryologist 100:145–158

    Google Scholar 

  • Moya P, Molins A, Martínez-Alberola F, Muggia L, Barreno E (2017) Unexpected associated microalgal diversity in the lichen Ramalina farinacea is uncovered by pyrosequencing analyses. PLoS One 12(4):e0175091

    Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    CAS  CrossRef  Google Scholar 

  • Nash TH III (1996) Lichen biology, 2nd edn. Cambridge University Press, New York

    Google Scholar 

  • Nash TH III, Gries C (1995) The response of lichens to atmospheric deposition with an emphasis on the Arctic. Sci Total Environ 160–161:737–747

    CrossRef  Google Scholar 

  • Nash TH III, Gries C (2002) Lichens as bioindicators of sulfur dioxide. Symbiosis 33:1–21

    CAS  Google Scholar 

  • Nimis P, Lazzarin G, Lazzarin A, Skert N (2000) Biomonitoring of trace elements with lichens in Veneto (NE Italy). The Science of The Total Environment 255:97–111

    Google Scholar 

  • Nimis PL, Castello M, Perotti M (1990) Lichens as biomonitors of sulphur dioxide pollution in la spezia (northern italy). Lichenol 22:333–344

    CrossRef  Google Scholar 

  • Ochoa-Hueso R, Munzi S, Alonso R, Alonso R, Arróniz-Crespo M, Avila A, Bermejo V, Bobbink R, Branquinho C, Concostrina-Zubiri L, Cruz C, Cruz de Carvalho R, De Marco A, Dias T, Elustondo D, Elvira S, Estébanez B, Fusaro L, Gerosa G, Izquieta-Rojano S, Lo Cascio M, Marzuoli R, Matos P, Mereu S, Merino J, Morillas L, Nunes A, Paoletti E, Paoli L, Pinho P, Rogers IB, Santos A, Sicard P, Stevens CJ, Theobald MR (2017) Ecological impacts of atmospheric pollution and interactions with climate change in terrestrial ecosystems of the Mediterranean Basin: current research and future directions. Environ Pollut 227:194–206

    CAS  CrossRef  Google Scholar 

  • Ockenden WA, Steinnes E, Parker C, Jones KC (1998) Observations on persistent organic pollutants in plants: Implications for their use as passive air samplers and for POP cycling. Environ Sci Technol 32:2721–2726

    CAS  CrossRef  Google Scholar 

  • Ozturk S, Aslim B, Suludere Z, Tan S (2014) Metal removal of cyanobacterial exopolysaccharides by uronic acid content and monosaccharide composition. Carbohydr Polym 101:265–271

    CAS  CrossRef  Google Scholar 

  • Paoli L, Corsini A, Bigagli V, Vannini J, Bruscoli C, Loppi S (2012) Long-term biological monitoring of environmental quality around a solid waste landfill assessed with lichens. Environmental Pollution 161:70–75

    Google Scholar 

  • Paoli L, Pisani T, Guttová A, Sardella G, Loppi S (2011) Physiological and chemical response of lichens transplanted in and around an industrial area of south Italy: relationship with the lichen diversity. Ecotoxicol Environ Saf 74:650–657

    CAS  CrossRef  Google Scholar 

  • Pawlik-Skowronska B (2000) Relationships between acid-soluble thiol peptides and accumulated Pb in the green alga Stichococcus bacillaris. Aquat Toxicol 50:221–230

    CAS  CrossRef  Google Scholar 

  • Pawlik-Skowrońska B, Bačkor M (2011) Zn/Pb-tolerant lichens with higher content of secondary metabolites produce less phytochelatins than specimens living in unpolluted habitats. Environ Exp Bot 72:64–70

    CrossRef  CAS  Google Scholar 

  • Pawlik-Skowrońska B, Di Toppi LS, Favali MA, Fossati F, Pirszel J, Skowronski T (2002) Lichens respond to heavy metals by phytochelatin synthesis. New Phytol 156:95–102

    CrossRef  Google Scholar 

  • Pereira P, de Pablo H, Rosa-Santos F, Pacheco M, Vale C (2009) Metal accumulation and oxidative stress in Ulva sp. substantiated by response integration into a general stress index. Aquat Toxicol 91:336–345

    CAS  CrossRef  Google Scholar 

  • Pinho P, Augusto S, Maguas C, Pereira MJ, Soares A, Branquinho C (2008) Impact of neighbourhood land-cover in epiphytic lichen diversity: analysis of multiple factors working at different spatial scales. Environ Pollut 151:414–422

    CAS  CrossRef  Google Scholar 

  • Pinho P, Dias T, Cruz C, Tang YS, Sutton MA, Martins-Loução MA, Máguas C, Branquinho C, (2011) Using lichen functional diversity to assess the effects of atmospheric ammonia in Mediterranean woodlands. Journal of Applied Ecology 48:1107–1116

    Google Scholar 

  • Poličnik H, Franc B, Cvetka RL (2004) Monitoring of short-term heavy metal deposition by accumulation in epiphytic lichens (Hypogymnia physodes (L.) Nyl.). J Atmos Chem 49:223–230

    CrossRef  CAS  Google Scholar 

  • Puckett KJ (1976) The effect of heavy metals on some aspects of lichen physiology. Can J Bot 54:2695–2703

    CAS  CrossRef  Google Scholar 

  • Purvis OW, Pawlik-Skowrońska B, Cressey G, Jones GC, Kearsley A, Spratt J (2008) Mineral phases and element composition of the copper hyperaccumulator lichen Lecanora polytropa. Mineral Mag 72:539–548

    CrossRef  CAS  Google Scholar 

  • Richardson DH (1993) Pollution monitoring with lichens. Richmond Publishing, Slough

    Google Scholar 

  • Sanità Di Toppi L, Musetti R, Marabottini R, Corradi MG, Favali MA, Badiani M (2004) Responses of Xanthoria parietina thalli to environmentally relevant concentrations of hexavalent chromium. Funct Plant Biol 31:329–338

    Google Scholar 

  • Sanità Di Toppi L, Musetti R, Vattuone Z, Pawlik Skowronska B, Fassati F, Bertoli L, Badiani M, Favali MA (2005) Cadmium distribution and effects on ultrastructure and chlorophyll status in photobionts and mycobionts of Xanthoria parietina. Microsc Res Tech 66:229–238

    CrossRef  CAS  Google Scholar 

  • Sarret G, Manceau A, Cuny D, van Haluwyn C, Deruelle S, Hazemann JL, Soldo Y, Eybert Berard L, Menthonnex JJ (1998) Mechanisms of lichen resistance to metallic pollution. Environ Sci Technol 32:3325–3330

    CAS  CrossRef  Google Scholar 

  • Sett R, Kundu M (2016) Epiphytic lichens: their usefulness as bio-indicators of air pollution. Donnish J 3:17–24

    Google Scholar 

  • Sigal LL, Nash TH, (1983) Lichen Communities on Conifers in Southern California Mountains: An Ecological Survey Relative to Oxidant Air Pollution. Ecology 64:1343–1354

    Google Scholar 

  • Sipman HJM, Aptroot A (2001) Where are the missing lichens? Mycol Res 105:1433–1439

    Google Scholar 

  • Sloof JE (1995) Lichens as quantitative biomonitors for atmospheric trace-element deposition, using transplants. Atmos Environ 29:11–20

    CAS  CrossRef  Google Scholar 

  • Spribille T, Tuovinen V, Resl P, Vanderpool D, Wolinski H, Aime MC, Schneider K, Stabentheiner E, Tomme Heller M, Thor G, Mayrhofer H, Johannesson H, McCutcheon JP (2016) Basidiomycete yeasts in the cortex of Ascomycete macrolichens. Science 353:488–492

    CAS  CrossRef  Google Scholar 

  • Stofer S, Calatayud V, Giordani P, Neville P (2012) Assessment of Epiphytic Lichen Diversity. In United Nations Economic Commission for Europe (Ed.), Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests (p. 14). Hamburg: UNECE, ICP Forests.

    Google Scholar 

  • Takala K, Olkkonen H (1981) Lead content of an epiphytic lichen in the urban area of Kuopio, east central Finland. Finn Zool Bot Publ Board 18:85–89

    Google Scholar 

  • Tehler A, Irestedt M (2007) Parallel evolution of lichen growth forms in the family Roccellaceae (Arthoniales, Ascomycota). Cladistics 23:432–454

    CrossRef  Google Scholar 

  • Valencia-Islas N, Zambrano A, Rojas JL (2007) Ozone reactivity and free radical scavenging behavior of phenolic secondary metabolites in lichens exposed to chronic oxidant air pollution from Mexico City. J Chem Ecol 33:1619–1634

    CAS  CrossRef  Google Scholar 

  • Varela Z, López-Sánchez G, Yáñez M, Pérez C, Fernández JA, Matos P, Branquinho C, Aboal JR (2018) Changes in epiphytic lichen diversity are associated with air particulate matter levels: The case study of urban areas in Chile. Ecological Indicators 91:307–314

    Google Scholar 

  • de Vera JP (2012) Lichens as survivors in space and on Mars. Fungal Ecol 5:472–479

    CrossRef  Google Scholar 

  • de Vera JP, Alawi M, Backhaus T, Baqué M, Billi D, Böttger U, Berger T, Bohmeier M, Cockell C, Demets R, de la Torre Noetzel R, Edwards H, Elsaesser A, Fagliarone C, Fiedler A, Foing B, Foucher F, Fritz J, Hanke F, Herzog T, Horneck G, Hübers HW, Huwe B, Joshi J, Kozyrovska N, Kruchten M, Lasch P, Lee N, Leuko S, Leya T, Lorek A, Martínez-Frías J, Meessen J, Moritz S, Moeller R, Olsson-Francis K, Onofri S, Ott S, Pacelli C, Podolich O, Rabbow E, Reitz G, Rettberg P, Reva O, Rothschild L, Sancho LG, Schulze-Makuch D, Selbmann L, Serrano P, Szewzyk U, Verseux C, Wadsworth J, Wagner D, Westall F, Wolter D, Zucconi L (2019) Limits of life and the habitability of Mars: the ESA space experiment BIOMEX on the ISS. Astrobiology 19:145–157

    CrossRef  CAS  Google Scholar 

  • Wieners PC, Mudimu O, Bilger W (2018) Survey of the occurrence of desiccation-induced quenching of basal fluorescence in 28 species of green microalgae. Planta 248:601–612

    CAS  CrossRef  Google Scholar 

  • Zhang Y, Li S, Lai Y, Wang L, Wang F, Chen Z (2019) Predicting future contents of soil heavy metals and related health risks by combining the models of source apportionment, soil metal accumulation and industrial economic theory. Ecotoxicol Environ Saf 171:211–221

    CAS  CrossRef  Google Scholar 

Download references

Acknowledgements

We wish to thank Dr Jon San Sebastián for the elaboration of Fig. 1. This work was supported by the Ministerio de Economía y Competitividad (MINECO-FEDER, Spain) (CGL2016-79158-P) and Generalitat Valenciana (GVA, Excellence in Research Spain) (PROMETEOIII/2017/039) and Comunidad de Madrid - European Commission (Youth Employment Intiative, Spain) (PEJ-2017-AI/AMB-6337).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myriam Catalá .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Expósito, J.R., Barreno, E., Catalá, M. (2020). Biological Strategies of Lichen Symbionts to the Toxicity of Lead (Pb). In: Gupta, D., Chatterjee, S., Walther, C. (eds) Lead in Plants and the Environment. Radionuclides and Heavy Metals in the Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-21638-2_9

Download citation