Skip to main content

Interfacing Biology Systems with Nanoelectronics for Nanodevices

  • Chapter
  • First Online:
Book cover Nanoelectronic Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 116))

Abstract

The interface between nanoscale electronic devices and biological systems enables interactions at length scales natural to biology, and thus should maximize communication between these two diverse yet complementary systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yousaf, S.A., Salamat, A.: Effect of heating environment on fluorine doped tin oxide (f: SnO/sub 2/) thin films for solar cell applications. Faculty of Engineering & Technology, Islamabad (2008)

    Google Scholar 

  2. Chen, K.I., Li, B.R., Chen, Y.T.: Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today 6, 131–154 (2011)

    CAS  Google Scholar 

  3. Allen, B.L., Kichambare, P.D., Star, A.: Carbon nanotube field-effect-transistor-based biosensors. Adv. Mater. 19, 1439–1451 (2007)

    CAS  Google Scholar 

  4. Liu, Y., Dong, X., Chen, P.: Biological and chemical sensors based on graphene materials. Chem. Soc. Rev. 41, 2283–2307 (2012)

    CAS  Google Scholar 

  5. Patolsky, F., Zheng, G., Hayden, O., Lakadamyali, M., Zhuang, X., et al.: Electrical detection of single viruses. Proc. Natl. Acad. Sci. USA 101, 14017–14022 (2004)

    CAS  Google Scholar 

  6. Sorgenfrei, S., Chiu, C.Y., Gonzalez Jr., R.L., Yu, Y.J., Kim, P., et al.: Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor. Nat. Nanotechnol. 6, 126–132 (2011)

    CAS  Google Scholar 

  7. Huang, Y., Cai, D., Chen, P.: Micro and nanotechnologies for study of cell secretion. Anal. Chem. 83, 4393–4406 (2011)

    CAS  Google Scholar 

  8. Huang, Y., Chen, P.: Nanoelectronic biosensing of dynamic cellular activities based on nanostructured materials. Adv. Mater. 22, 2818–2823 (2010)

    CAS  Google Scholar 

  9. Patolsky, F., Timko, B.P., Yu, G., Fang, Y., Greytak, A.B., et al.: Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313, 1100–1104 (2006)

    CAS  Google Scholar 

  10. Tian, B., Cohen-karni, T., Qing, Q., Duan, X., Xie, P., et al.: Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329, 830–834 (2010)

    CAS  Google Scholar 

  11. Duan, X., Gao, R., Xie, P., Cohen-karni, T., Qing, Q., et al.: Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat. Nanotechnol. 7, 174–179 (2011)

    Google Scholar 

  12. Pui, T.S., Sudibya, H.G., Luan, X., Zhang, Q., Ye, F., et al.: Non-invasive detection of cellular bioelectricity based on carbon nanotube devices for high-throughput drug screening. Adv. Mater. 22, 3199–3203 (2010)

    CAS  Google Scholar 

  13. (a) Koch, C., Reid, R.C.: Nature 483, 397–398 (2012). (b) Hille, B.: Ion Channels of Excitable Membranes, 3rd edn. Sinauer Associates Inc; Sunderland (2001). (c) Dunlop, J., Bowlby, M., Peri, R., Vasilyev, D., Arias, R.: Nature Rev. Drug Discov. 7, 358–368 (2008). (d) Meyer, T., Boven, K.H., Gunther, E., Fejtl, M.: Drug Saf. 27, 763–772 (2004); (e) Dhein, S., Mohr, F.W., Delmar, M.: Practical Methods in Cardiovascular Research. Springer, Berlin, pp. 215–453 (2005). (f) Mark Wightman, R.: Science 311, 1570–1574 (2006). (g) Rutten, W.L.C.: Annu. Rev. Biomed. Engl. 4, 407–452 (2002)

    Google Scholar 

  14. (a) Molleman, A.: Patch Clamping: An Introductory Guide to Patch Clamp Electrophysiology. Wiley (2003). (b) Purves, R.D.: Microelectrode Methods for Intracellular Recording and Ionophoresis. Academic Press Inc., Burlington (1981)

    Google Scholar 

  15. (a) Erickson, J., Tooker, A., Tai, Y.C., Pine, J.J.: Neurosci. Method. 175, 1–16 (2008). (b) Hai, A., Shappir, J., Spira, M.E.: Nat. Methods. 7, 200–202 (2010). (c) Xie, C., Lin, Z., Hanson, L., Cui, Y., Cui, B.: Nat. Nanotech. 7, 185–190 (2012). (d) Robinson, J.T., Jorgolli, M., Shalek, A.K., Yoon, M.H., Gertner, R.S., Park, H.: Nat. Nanotech. 7, 180–184 (2012)

    Google Scholar 

  16. Dvir, T., Timko, B.P., Kohane, D.S., Langer, R.: Nature Nanotech. 6, 13–22 (2011)

    CAS  Google Scholar 

  17. (a) Timko, B.P., Cohen-Karni, T., Yu, G., Qing, Q., Tian, B., Lieber, C.M.: Nano Lett. 9, 914–918 (2009). (b) Viventi, J., Kim, D.H., Vigeland, L., Frechette, E.S., Blanco, J.A., Kim, Y.S., et al.: Nat. Neurosci. 14, 1599–1605 (2011). (c) Kim, D.H., Lu, N., Ma, R., Kim, Y.S., Kim, R.H., Wang, S., et al.: Science 333, 838–843 (2011)

    Google Scholar 

  18. (a) Scanziani, M., Hausser, M.: Nature 461, 930–939 (2009). (b) Tian, B., Cohen-Karni, T., Qing, Q., Duan, X., Xie, P., Lieber, C.M.: Science 329, 831–834 (2010). (c) Duan, X., Gao, R., Xie, P., Cohen-Karni, T., Qing, Q., Choe, H.S., Tian, B., Jiang, X., Lieber, C.M.: Nat Nanotech. 7, 174–179 (2012). (d) Jiang, Z., Qing, Q., Xie, P., Gao, R., Lieber, C.M.: Nano Lett. 12, 1711–1716 (2012). (e) Gao, R., Strehle, S., Tian, B., Cohen-Karni, T., Xie, P., Duan, X., Quan, Q., Lieber, C.M.: Nano Lett. 12, 3329–3333 (2012). (f) Patolsky, F., Timko, B.P., Yu, G., Fang, Y., Greytak, A.B., Zheng, G., Lieber, C.M.: Science 313, 1100–1104 (2006). (g) Cohen-Karni, T., Qing, Q., Li, Q., Fang, Y., Lieber, C.M.: Nano Lett. 10, 1098–1102 (2010). (h) Timko, B.P., Cohen-Karni, T., Qing, Q., Tian, B., Lieber, C.M.: IEEE Trans. Nanotechnol. 9, 269–280 (2010). (i) Cohen-Karni, T., Timko, B.P., Weiss, L.E., Lieber, C.M.: Proc. Natl. Acad. Sci. USA 106, 7309–7313 (2009). (j) Cohen-Karni, T., Casanova, D., Cahoon, J., Qing, Q., Bell, D., Lieber, C.M.: Nano Lett. 12, 2639–2644 (2012). (k) Qing, Q., Pal, S.K., Tian, B., Duan, X., Timko, B.P., Cohen-Karni, T., Murthy, V.N., Lieber, C.M.: Proc. Natl. Acad. Sci. USA 107, 1882–1887 (2010)

    Google Scholar 

  19. Lu, W., Lieber, C.M.: Nature Mater. 6, 841–850 (2007)

    CAS  Google Scholar 

  20. https://doi.org/10.1073/pnas.1305209110

    CAS  Google Scholar 

  21. (a) Prohaska, O.J., Olcaytug, F., Pfundner, P., Dragaun, H.: IEEE Trans. Biomed. Eng. 33, 223–229 (1986) (PubMed: 3957371). (b) Patolsky, F., Zheng, G., Lieber, C.M.: Anal. Chem. 78, 4260–4269 (2006). (c) Sze, S.M., Ng, K.K.: Physics of Semiconductor Devices, 3rd edn. Wiley Interscience (2006)

    Google Scholar 

  22. (a) Jiang, X., Tian, B., Xiang, J., Qian, F., Zheng, G., Wang, H., Mai, L., Lieber, C.M.: Proc. Natl. Acad. Sci. USA 108, 12212–12216 (2011). (b) Yang, C., Zhong, Z., Lieber, C.M.: Science 310, 1304–1307 (2005) (PubMed: 16311329). (c) Tian, B., Xie, P., Kempa, T.J., Bell, D.C., Lieber, C.M.: Nat. Nanotech. 4, 824–829 (2009). (d) Pan, Z., Dai, Z., Wang, Z.: Science 291, 1947–1949 (2001). (e) Wang, X., Summers, C.J., Wang, Z.: Nano Lett. 4, 423–426 (2004)

    Google Scholar 

  23. Patolsky, F., Timko, B.P., Zheng, G., Lieber, C.M.: Nanowire-based nanoelectronic devices in the life sciences. MRS Bull. 32, 142–149 (2007)

    CAS  Google Scholar 

  24. Timko, B.P., Cohen-Karni, T., Qing, Q., Tian, B.Z., Lieber, C.M.: Design and implementation of functional nanoelectronic interfaces with biomolecules, cells, and tissue using nanowire device arrays. IEEE Trans. Nanotechnol. 9, 269–280 (2010)

    Google Scholar 

  25. Fan, Z.Y., Razavi, H., Do, J.W., Moriwaki, A., Ergen, O., et al.: Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat. Mater. 8, 648–653 (2009)

    CAS  Google Scholar 

  26. Boettcher, S.W., Spurgeon, J.M., Putnam, M.C., Warren, E.L., Turner-Evans, D.B., et al.: Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes. Science 327, 185–187 (2010)

    CAS  Google Scholar 

  27. Kelzenberg, M.D., Boettcher, S.W., Petykiewicz, J.A., Turner-Evans, D.B., Putnam, M.C., et al.: Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat. Mater. 9, 239–244 (2010)

    CAS  Google Scholar 

  28. Garnett, E., Yang, P.D.: Light trapping in silicon nanowire solar cells. Nano Lett. 10, 1082–1087 (2010)

    CAS  Google Scholar 

  29. Qin, Y., Wang, X.D., Wang, Z.L.: Microfibre-nanowire hybrid structure for energy scavenging. Nature 451, U809–U805 (2008)

    Google Scholar 

  30. Xu, S., Qin, Y., Xu, C., Wei, Y.G., Yang, R.S., Wang, Z.L.: Self-powered nanowire devices. Nat. Nanotechnol. 5, 366–373 (2010)

    CAS  Google Scholar 

  31. Wang, X.D., Song, J.H., Liu, J., Wang, Z.L.: Direct-current nanogenerator driven by ultrasonic waves. Science 316, 102–105 (2007)

    CAS  Google Scholar 

  32. Wang, Z.L., Song, J.H.: Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science 312, 242–246 (2006)

    CAS  Google Scholar 

  33. Fan, Z., Ho, J.C., Jacobson, Z.A., Razavi, H., Javey, A.: Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry. Proc. Natl. Acad. Sci. USA 105, 11066–11070 (2008)

    CAS  Google Scholar 

  34. Fan, Z., Ho, J.C., Takahashi, T., Yerushalmi, R., Takei, K., et al.: Toward the development of printable nanowire electronics and sensors. Adv. Mater. 21, 3730–3743 (2009)

    CAS  Google Scholar 

  35. Javey, A., Nam, S., Friedman, R.S., Yan, H., Lieber, C.M.: Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. Nano Lett. 7, 773–777 (2007)

    CAS  Google Scholar 

  36. Nam, S., Jiang, X.C., Xiong, Q.H., Ham, D., Lieber, C.M.: Vertically integrated, three-dimensional nanowire complementary metal-oxide-semiconductor circuits. Proc. Natl. Acad. Sci. USA 106, 21035–21038 (2009)

    CAS  Google Scholar 

  37. Whang, D., Jin, S., Wu, Y., Lieber, C.M.: Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. 3, 1255–1259 (2003)

    CAS  Google Scholar 

  38. Kim, W., Ng, J.K., Kunitake, M.E., Conklin, B.R., Yang, P.D.: Interfacing silicon nanowires with mammalian cells. J. Am. Chem. Soc. 129, 7228 (2007)

    CAS  Google Scholar 

  39. Chevrier, N., Mertins, P., Artyomov, M.N., Shalek, A.K., Iannacone, M., et al.: Systematic discovery of TLR signaling components delineates viral-sensing circuits. Cell 147, 853–867 (2011)

    CAS  Google Scholar 

  40. Shalek, A.K., Robinson, J.T., Karp, E.S., Lee, J.S., Ahn, D.R., et al.: Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. Proc. Natl. Acad. Sci. USA 107, 1870–1875 (2010)

    CAS  Google Scholar 

  41. Xie, C., Hanson, L., Cui, Y., Cui, B.X.: Vertical nanopillars for highly localized fluorescence imaging. Proc. Natl. Acad. Sci. USA 108, 3894–3899 (2011)

    CAS  Google Scholar 

  42. Tian, B.Z., Liu, J., Dvir, T., Jin, L.H., Tsui, J.H., et al.: Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. (2012) (Published online)

    Google Scholar 

  43. Duan, X.J., Gao, R.X., Xie, P., Cohen-Karni, T., Qing, Q., et al.: Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat. Nanotechnol. 7, 174–179 (2012)

    CAS  Google Scholar 

  44. Gao, R.X., Strehle, S., Tian, B.Z., Cohen-Karni, T., Xie, P., et al.: Outside looking in: nanotube transistor intracellular sensors. Nano Lett. 12, 3329–3333 (2012)

    CAS  Google Scholar 

  45. Jiang, Z., Qing, Q., Xie, P., Gao, R.X., Lieber, C.M.: Kinked p-n junction nanowire probes for high spatial resolution sensing and intracellular recording. Nano Lett. 12, 1711–1716 (2012)

    CAS  Google Scholar 

  46. Sakmann, B., Neher, E.: Patch clamp techniques for studying ionic channels in excitable membranes. Annu. Rev. Physiol. 46, 455–472 (1984)

    CAS  Google Scholar 

  47. Qing, Q., Pal, S.K., Tian, B., Duan, X., Timko, B.P., et al.: Nanowire transistor arrays for mapping neural circuits in acute brain slices. Proc. Natl. Acad. Sci. USA 107, 1882–1887 (2010)

    CAS  Google Scholar 

  48. Robinson, J.T., Jorgolli, M., Shalek, A.K., Yoon, M.H., Gertner, R.S., Park, H.: Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat. Nanotechnol. 7, 180–184 (2012)

    CAS  Google Scholar 

  49. Ewing, A.G., Strein, T.G., Lau, Y.Y.: Analytical chemistry in microenvironments-single nerve cells. Acc. Chem. Res. 25, 440–447 (1992)

    CAS  Google Scholar 

  50. Schrlau, M.G., Dun, N.J., Bau, H.H.: Cell electrophysiology with carbon nanopipettes. Acs Nano. 3, 563–568 (2009)

    CAS  Google Scholar 

  51. Xie, C., Lin, Z.L., Hanson, L., Cui, Y., Cui, B.X.: Intracellular recording of action potentials by nanopillar electroporation. Nat. Nanotechnol. 7, 185–190 (2012)

    CAS  Google Scholar 

  52. Bohn, P.W.: Nanoscale control and manipulation of molecular transport in chemical analysis. Annu. Rev. Anal. Chem. 279–296 (2009)

    CAS  Google Scholar 

  53. Henstridge, M.C., Compton, R.G.: Mass Transport to micro- and nanoelectrodes and their arrays: a review. Chem. Rec. 12, 63–71 (2012)

    CAS  Google Scholar 

  54. Walsh, D.A., Lovelock, K.R.J., Licence, P.: Ultramicroelectrode voltammetry and scanning electrochemical microscopy in room-temperature ionic liquid electrolytes. Chem. Soc. Rev. 39, 4185–4194 (2010)

    CAS  Google Scholar 

  55. Yeh, J.I., Shi, H.B.: Nanoelectrodes for biological measurements. Wiley Interdisc. Rev. Nanomed. Nanobiotechnol. 2, 176–188 (2010)

    CAS  Google Scholar 

  56. Sze, S.M.: Physics of Semiconductor Devices, 2nd edn. Wiley-Interscience, p. 880 (1981)

    Google Scholar 

  57. Buzsaki, G., Anastassiou, C.A., Koch, C.: The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13, 407–420 (2012)

    CAS  Google Scholar 

  58. Plonsey, R., Barr, R.C.: Bioelectricity—A Quantitative Approach. 2nd edn. Kluwer Academic/Plenum Publishers (2000)

    Google Scholar 

  59. Lu, W., Xie, P., Lieber, C.M.: Nanowire transistor performance limits and applications. IEEE Trans. Electron. Dev. 55, 2859–2876 (2008)

    CAS  Google Scholar 

  60. Givargizov, E.I.: Fundamental aspects of VLS growth. J. Cryst. Growth 31, 20–30 (1975)

    CAS  Google Scholar 

  61. Wagner, R.S., Ellis, W.C.: Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 (1964)

    CAS  Google Scholar 

  62. Cui, Y., Lauhon, L.J., Gudiksen, M.S., Wang, J.F., Lieber, C.M.: Diameter-controlled synthesis of singlecrystal silicon nanowires. Appl. Phys. Lett. 78, 2214–2216 (2001)

    CAS  Google Scholar 

  63. Morales, A.M., Lieber, C.M.: A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208–211 (1998)

    CAS  Google Scholar 

  64. Law, M., Goldberger, J., Yang, P.D.: Semiconductor nanowires and nanotubes. Annu. Rev. Mater. Res. 34, 83–122 (2004)

    CAS  Google Scholar 

  65. Duan, X.F., Huang, Y., Cui, Y., Wang, J.F., Lieber, C.M.: Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66–69 (2001)

    CAS  Google Scholar 

  66. Duan, X.F., Lieber, C.M.: General Synthesis of compound semiconductor nanowires. Adv. Mater. 12, 298–302 (2000)

    CAS  Google Scholar 

  67. Duan, X.F., Lieber, C.M.: Laser-assisted catalytic growth of single crystal GaN nanowires. J. Am. Chem. Soc. 122, 188–189 (2000)

    CAS  Google Scholar 

  68. Bjork, M.T., Ohlsson, B.J., Sass, T., Persson, A.I., Thelander, C., et al.: One-dimensional heterostructures in semiconductor nanowhiskers. Appl. Phys. Lett. 80, 1058–1060 (2002)

    CAS  Google Scholar 

  69. Gudiksen, M.S., Lauhon, L.J., Wang, J., Smith, D.C., Lieber, C.M.: Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415, 617–620 (2002)

    CAS  Google Scholar 

  70. Cohen-Karni, T., Casanova, D., Cahoon, J.F., Qing, Q., Bell, D.C., Lieber, C.M.: Synthetically encoded ultrashort-channel nanowire transistors for fast, pointlike cellular signal detection. Nano Lett. 12, 2639–2644 (2012)

    CAS  Google Scholar 

  71. Lieber, C.M.: Nanowire superlattices. Nano Lett. 2, 81–82 (2002)

    CAS  Google Scholar 

  72. Wu, Y.Y., Fan, R., Yang, P.D.: Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires. Nano Lett. 2, 83–86 (2002)

    CAS  Google Scholar 

  73. Lauhon, L.J., Gudiksen, M.S., Wang, C.L., Lieber, C.M.: Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 420, 57–61 (2002)

    CAS  Google Scholar 

  74. Tian, B.Z., Zheng, X.L., Kempa, T.J., Fang, Y., Yu, N.F., et al.: Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, U885–U888 (2007)

    Google Scholar 

  75. Qian, F., Gradecak, S., Li, Y., Wen, C.Y., Lieber, C.M.: Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 5, 2287–2291 (2005)

    CAS  Google Scholar 

  76. Li, Y., Qian, F., Xiang, J., Lieber, C.M.: Nanowire electronic and optoelectronic devices. Mater. Today 9, 18–27 (2006)

    CAS  Google Scholar 

  77. Lu, W., Lieber, C.M.: Nanoelectronics from the bottom up. Nat. Mater. 6, 841–850 (2007)

    CAS  Google Scholar 

  78. Hu, Y.J., Churchill, H.O.H., Reilly, D.J., Xiang, J., Lieber, C.M., Marcus, C.M.: A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor. Nat. Nanotechnol. 2, 622–625 (2007)

    CAS  Google Scholar 

  79. Hu, Y.J., Kuemmeth, F., Lieber, C.M., Marcus, C.M.: Hole spin relaxation in Ge-Si core-shell nanowire qubits. Nat. Nanotechnol. 7, 47–50 (2012)

    CAS  Google Scholar 

  80. Lu, W., Xiang, J., Timko, B.P., Wu, Y., Lieber, C.M.: One-dimensional hole gas in germanium/silicon nanowire heterostructures. Proc. Natl. Acad. Sci. USA 102, 10046–10051 (2005)

    CAS  Google Scholar 

  81. Xiang, J., Lu, W., Hu, Y.J., Wu, Y., Yan, H., Lieber, C.M.: Ge/Si nanowire heterostructures as highperformance field-effect transistors. Nature 441, 489–493 (2006)

    CAS  Google Scholar 

  82. Tian, B.Z., Xie, P., Kempa, T.J., Bell, D.C., Lieber, C.M.: Single-crystalline kinked semiconductor nanowire superstructures. Nat. Nanotechnol. 4, 824–829 (2009)

    CAS  Google Scholar 

  83. Jiang, X.C., Tian, B.Z., Xiang, J., Qian, F., Zheng, G.F., et al.: Rational growth of branched nanowire heterostructures with synthetically encoded properties and function. Proc. Natl. Acad. Sci. USA 108, 12212–12216 (2011)

    CAS  Google Scholar 

  84. Dick, K.A., Deppert, K., Larsson, M.W., Martensson, T., Seifert, W., et al.: Synthesis of branched ‘nanotrees’ by controlled seeding of multiple branching events. Nat. Mater. 3, 380–384 (2004)

    CAS  Google Scholar 

  85. Wang, D., Qian, F., Yang, C., Zhong, Z.H., Lieber, C.M.: Rational growth of branched and hyperbranched nanowire structures. Nano Lett. 4, 871–874 (2004)

    CAS  Google Scholar 

  86. Lu, W., Lieber, C.M.: Semiconductor nanowires. J. Phys. D-Appl. Phys. 39, R387–R406 (2006)

    CAS  Google Scholar 

  87. Cui, Y., Lieber, C.M.: Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291, 851–853 (2001)

    CAS  Google Scholar 

  88. Zhou, X., Moran-Mirabal, J.M., Craighead, H.G., McEuen, P.L.: Supported lipid bilayer/carbon nanotube hybrids. Nat. Nanotechnol. 2, 185–190 (2007)

    CAS  Google Scholar 

  89. McAlpine, M.C., Friedman, R.S., Jin, S., Lin, K.H., Wang, W.U., Lieber, C.M.: High-performance nanowire electronics and photonics on glass and plastic substrates. Nano Lett. 3, 1531–1535 (2003)

    CAS  Google Scholar 

  90. McAlpine, M.C., Friedman, R.S., Lieber, C.M.: High-performance nanowire electronics and photonics and nanoscale patterning on flexible plastic substrates. Proc. IEEE 93, 1357–1363 (2005)

    CAS  Google Scholar 

  91. Kim, D.H., Lu, N., Ghaffari, R., Kim, Y.S., Lee, S.P., et al.: Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nat. Mater. 10, 316–323 (2011)

    CAS  Google Scholar 

  92. Viventi, J., Kim, D.H., Moss, J.D., Kim, Y.S., Blanco, J.A., et al.: A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Sci. Transl. Med. 2 (2010)

    Google Scholar 

  93. Viventi, J., Kim, D.H., Vigeland, L., Frechette, E.S., Blanco, J.A., et al.: Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 14, U1599–U1138 (2011)

    Google Scholar 

  94. Kim, D.H., Viventi, J., Amsden, J.J., Xiao, J.L., Vigeland, L., et al.: Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9, 511–517 (2010)

    CAS  Google Scholar 

  95. Hu, Y.J., Xiang, J., Liang, G.C., Yan, H., Lieber, C.M.: Sub-100 nanometer channel length Ge/Si nanowire transistors with potential for 2 THz switching speed. Nano Lett. 8, 925–930 (2008)

    CAS  Google Scholar 

  96. Cohen-Karni, T., Timko, B.P., Weiss, L.E., Lieber, C.M.: Flexible electrical recording from cells using nanowire transistor arrays. Proc. Natl. Acad. Sci. USA 106, 7309–7313 (2009)

    CAS  Google Scholar 

  97. Timko, B.P., Cohen-Karni, T., Yu, G.H., Qing, Q., Tian, B.Z., Lieber, C.M.: Electrical recording from hearts with flexible nanowire device arrays. Nano Lett. 9, 914–918 (2009)

    CAS  Google Scholar 

  98. http://nano.gov/sites/default/files/pub_resource/nni_siginit_nanoelectronics_jul_2010.pdf

  99. Ieong, M., Doris, B., Kedzierski, J., Rim, K., Yang, M.: Silicon device scaling to the sub-10-nm regime. Science (New York, N.Y.) 306, 2057–2060 (2004)

    CAS  Google Scholar 

  100. Mercanzini, A., Colin, P., Bensadoun, J.C., Bertsch, A., Renaud, P.: In vivo electrical impedance spectroscopy of tissue reaction to microelectrode arraysl. IEEE Trans. Biomed. Eng. 56, 1909–1918 (2009)

    Google Scholar 

  101. Patrick, E., Orazem, M.E., Sanchez, J.C., Nishida, T.: Corrosion of tungsten microelectrodes used in neural recording applications. J. Neurosci. Methods 198, 158–171 (2011)

    CAS  Google Scholar 

  102. Chernomordik, L.V., Kozlov, M.M.: Mechanics of membrane fusion. Nat. Struct. Mol. Biol. 15, 675–683 (2008)

    CAS  Google Scholar 

  103. Kauer, J.S., White, J.: Imaging and coding in the olfactory system. Annu. Rev. Neurosci. 24, 963–979 (2001)

    CAS  Google Scholar 

  104. Grinvald, A., Hildesheim, R.: VSDI: A new era in functional imaging of cortical dynamics. Nat. Rev. Neurosci. 5, 874–885 (2004)

    CAS  Google Scholar 

  105. Kralj, J.M., Douglass, A.D., Hochbaum, D.R., Maclaurin, D., Cohen, A.E.: Optical recording of action potentials in mammalian neurons using a microbial rhodopsin. Nat. Methods 9, U90–U130 (2012)

    Google Scholar 

  106. Kralj, J.M., Hochbaum, D.R., Douglass, A.D., Cohen, A.E.: Electrical Spiking in escherichia coli probed with a fluorescent voltage-indicating protein. Science 333, 345–348 (2011)

    CAS  Google Scholar 

  107. Hochberg, L.R., Bacher, D., Jarosiewicz, B., Masse, N.Y., Simeral, J.D., et al.: Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485, U372–U121 (2012)

    Google Scholar 

  108. Hochberg, L.R., Serruya, M.D., Friehs, G.M., Mukand, J.A., Saleh, M., et al.: Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442, 164–171 (2006)

    CAS  Google Scholar 

  109. Serruya, M.D., Hatsopoulos, N.G., Paninski, L., Fellows, M.R., Donoghue, J.P.: Instant neural control of a movement signal. Nature 416, 141–142 (2002)

    CAS  Google Scholar 

  110. Truccolo, W., Hochberg, L.R., Donoghue, J.P.: Collective dynamics in human and monkey sensorimotor cortex: predicting single neuron spikes. Nat. Neurosci. 13, U105–U275 (2010)

    Google Scholar 

  111. Ferrari, M.: Beyond drug delivery. Nat. Nanotechnol. 3, 131–132 (2008)

    CAS  Google Scholar 

  112. Nel, A.E., Madler, L., Velegol, D., Xia, T., Hoek, E.M.V., et al.: Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8, 543–557 (2009)

    CAS  Google Scholar 

  113. Rajendran, L., Knolker, H.J., Simons, K.: Subcellular targeting strategies for drug design and delivery. Nat. Rev. Drug Discov. 9, 29–42 (2010)

    CAS  Google Scholar 

  114. Summers, H.D., Rees, P., Holton, M.D., Brown, M.R., Chappell, S.C., et al.: Statistical analysis of nanoparticle dosing in a dynamic cellular system. Nat. Nanotechnol. 6, 170–174 (2011)

    CAS  Google Scholar 

  115. Wylie, R.G., Ahsan, S., Aizawa, Y., Maxwell, K.L., Morshead, C.M., Shoichet, M.S.: Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels. Nat. Mater. 10, 799–806 (2011)

    CAS  Google Scholar 

  116. Kloxin, A.M., Kasko, A.M., Salinas, C.N., Anseth, K.S.: Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324, 59–63 (2009). (PubMed: 19342581)

    CAS  Google Scholar 

  117. Dvir, T., Timko, B.P., Kohane, D.S., Langer, R.: Nanotechnological strategies for engineering complex tissues. Nat. Nanotechnol. 6, 13–22 (2011)

    CAS  Google Scholar 

  118. Hutmacher, D.W.: Biomaterials offer cancer research the third dimension. Nat. Mater. 9, 90–93 (2011)

    Google Scholar 

  119. Prestwich, G.D.: Evaluating drug efficacy and toxicology in three dimensions: using synthetic extracellular matrices in drug discovery. Acc. Chem. Res. 41, 139–148 (2008)

    CAS  Google Scholar 

  120. Rogers, J.A., Lagally, M.G., Nuzzo, R.G.: Synthesis, assembly and applications of semiconductor nanomembranes. Nature 477, 45–53 (2011)

    CAS  Google Scholar 

  121. Prohaska, O.J., Olcaytug, F., Pfundner, P., Dragaun, H.: Thin-film multiple electrode probes possibilities and limitations. IEEE Trans. Biomed. Eng. 33, 223–229 (1986)

    CAS  Google Scholar 

  122. Huh, D., Matthews, B.D., Mammoto, A., Montoya-Zavala, M., Hsin, H.Y., Ingber, D.E.: Reconstituting organ-level lung functions on a chip. Science 328, 1662–1669 (2010)

    CAS  Google Scholar 

  123. Cui, Y., Wei, Q., Park, H., Lieber, C.M.: Science 293 (2001)

    Google Scholar 

  124. Hahm, J.-I., Lieber, C.M.: Nano Lett. 4, 51 (2004)

    CAS  Google Scholar 

  125. Patolsky, F., Zheng, G., Hayden, O., Lakadamyali, M., Zhuang, X., Lieber, C.M.: Proc. Natl. Acad. Sci. USA 101, 14017 (2004)

    CAS  Google Scholar 

  126. Zheng, G., Patolsky, F., Cui, Y., Wang, W.U., Lieber, C.M.: Nat. Biotechnol. 23, 1294 (2005)

    CAS  Google Scholar 

  127. Kim, A., Ah, C.S., Yu, H.Y., Yang, J.H., Baek, I.B., Ahn, C.G., Park, C.W., Jun, M.S., Lee, S.: Appl. Phys. Lett. 91, 103901 (2007)

    Google Scholar 

  128. Patolsky, F., Zheng, G., Lieber, C.M.: Nat. Protoc. 1, 1711 (2006)

    CAS  Google Scholar 

  129. Stern, E., Klemic, J.F., Routenberg, D.A., Wyrembak, P.N., Turner-Evans, D.B., Hamilton, A.D., LaVan, D.A., Fahmy, T.M., Reed, M.A.: Nature 445, 519 (2007)

    CAS  Google Scholar 

  130. de Smet, L.C.P.M., et al.: Organic surface modification of silicon nanowire-based sensor devices. InTech (2011)

    Google Scholar 

  131. Curreli, M., Zhang, R., Ishikawa, F.N., Chang, H.K., Cote, R.J., Zhou, C., Thompson, M.E.: Real-time, label-free detection of biological entities using nanowire-based fets. IEEE Trans. Nanotechnol. 7(6), 651–667 (2008)

    Google Scholar 

  132. Ng, H.T., Han, J., Yamada, T., Nguyen, P., Chen, Y.P., Meyyappan, M.: Single crystal nanowire vertical surround-gate field-effect transistor. Nano Lett. 4(7), 1247–1252 (2004)

    CAS  Google Scholar 

  133. Cui, Y., Wei, Q., Park, H., Lieber, C.M.: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533), 1289–1292 (2001)

    CAS  Google Scholar 

  134. Huang, Y., Duan, X., Cui, Y., Lauhon, L.J., Kim, K.-H., Lieber, C.M.: Logic gates and computation from assembled nanowire building blocks. Science 294(5545), 1313–1317 (2001)

    CAS  Google Scholar 

  135. Wang, X., Song, J., Liu, J., Wang, Z.L.: Direct-current nanogenerator driven by ultrasonic waves. Science 316(5821), 102–105 (2007)

    CAS  Google Scholar 

  136. Hiralal, P., Chien, C., Lal, N.N., Abeygunasekara, W., Kumar, A., Butt, H., Zhou, H., Unalan, H.E., Baumberg, J.J., Amaratunga, G.A.J.: Nanowire-based multifunctional antireflection coatings for solar cells. Nanoscale 6, 14555–14562 (2014)

    CAS  Google Scholar 

  137. Ivanov, Y.P., Chuvilin, A., Lopatin, S., Kosel, J.: Modulated magnetic nanowires for controlling domain wall motion: toward 3d magnetic memories. ACS Nano 10(5), 5326–5332 (2016)

    CAS  Google Scholar 

  138. Bertok, T., Sediva, A., Vikartovska, A., Tkac, J.: Int. J. Electrochem. Sci. 9, 890 (2014)

    Google Scholar 

  139. Nie, S., Xing, Y., Kim, G.J., Simons, J.W.: Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng. 9, 257–288 (2007)

    CAS  Google Scholar 

  140. Loo, C., Lin, A., Hirsch, L., Lee, M.H., Barton, J., et al.: Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol. Cancer Res. Treat. 3, 33–40 (2004)

    CAS  Google Scholar 

  141. Nahar, M., Dutta, T., Murugesan, S., Asthana, A., Mishra, D., et al.: Functional polymeric nanoparticles: an efficient and promising tool for active delivery of bioactives. Crit. Rev. Ther. Drug Carrier Syst. 23, 259–318 (2006)

    CAS  Google Scholar 

  142. Billinghurst, M., Starner, T.: IEEE Comput. 32, 57 (1999)

    Google Scholar 

  143. De Rossi, D., Della Santa, A., Mazzoldi, A.: Mater. Sci. Eng. C 7, 31 (1999)

    Google Scholar 

  144. R. F. Service: Science 301, 909 (2003)

    Google Scholar 

  145. Zhang, Q.M., Bharti, V., Zhao, X.: Science 280, 2101 (1998)

    CAS  Google Scholar 

  146. Heeger, A.J.: J. Phys. Chem. B 105, 8475 (2001)

    CAS  Google Scholar 

  147. Ashley, S.: Sci. Am. 10, 52 (2003)

    Google Scholar 

  148. Zhang, Q.M., Li, H., Poh, M., Xia, F., Cheng, Z.Y., Xu, H., Huang, C.: Nature 419, 284 (2002)

    CAS  Google Scholar 

  149. Yu, X., Bates, J.B., Jellison Jr., G.E., Hart, F.X.: J. Electrochem. Soc. 144, 524 (1997)

    CAS  Google Scholar 

  150. Shenck, N.S., Paradiso, J.A.: IEEE Micro. 21, 30 (2001)

    Google Scholar 

  151. Venkatasubramanian, R., Siivola, E., Colpitts, T., O’Quinn, B.: Nature 413, 597 (2001)

    CAS  Google Scholar 

  152. Setiadi, D., Weller, H., Binnie, T.D.: Sens. Actuators, A 76, 145 (1999)

    CAS  Google Scholar 

  153. Wang, Z.L., Kong, X.Y., Ding, Y., Gao, P.X., Hughes, W.L., Yang, R., Zhang, Y.: Adv. Funct. Mater. 14, 943 (2004)

    CAS  Google Scholar 

  154. Xia, Y.N., Yang, P.D., Sun, Y.G., Wu, Y.Y., Mayers, B., Gates, B., Yin, Y.D., Kim, F., Yan, Y.Q.: Adv. Mater. 15, 353 (2003)

    CAS  Google Scholar 

  155. Huang, M.H., Wu, Y.Y., Feick, H., Tran, N., Weber, E., Yang, P.D.: Adv. Mater. 13, 113 (2003)

    Google Scholar 

  156. Pan, Z.W., Dai, Z.R., Wang, Z.L.: Science 2001, 291 (1947)

    Google Scholar 

  157. Wu, J.J., Liu, S.C., Wu, C.T., Chen, K.H., Chen, L.C.: Appl. Phys. Lett. 81, 1312 (2002)

    CAS  Google Scholar 

  158. Xing, Y.J., Xi, Z.H., Xue, Z.Q., Zhang, X.D., Song, J.H., Wang, R.M., Xu, J., Song, Y., Zhang, S.L., Yu, D.P.: Appl. Phys. Lett. 83, 1689 (2004)

    Google Scholar 

  159. Gao, P.X., Lao, C.S., Ding, Y., Wang, Z.L.: Adv. Funct. Mater. 16, 53 (2006)

    CAS  Google Scholar 

  160. Kong, X.Y., Ding, Y., Yang, R.S., Wang, Z.L.: Science 303, 1348 (2004)

    CAS  Google Scholar 

  161. Kong, X.Y., Wang, Z.L.: Nano Lett. 3, 1625 (2003)

    CAS  Google Scholar 

  162. Gao, P.X., Wang, Z.L.: Small 1, 945 (2005)

    CAS  Google Scholar 

  163. Gao, P.X., Ding, Y., Mai, W.J., Hughes, W.L., Lao, C.S., Wang, Z.L.: Science 309, 1700 (2005)

    CAS  Google Scholar 

  164. Wang, Z.L., Song, J.H.: Science 312, 242 (2006)

    CAS  Google Scholar 

  165. Song, J.H., Zhou, J., Wang, Z.L.: Nano Lett. 6, 1656 (2006)

    CAS  Google Scholar 

  166. Zhou, J., Lao, C.S., Gao, P.X., Mai, W.J., Wang, Z.L., Xu, N.S.: Solid State Commun. 139, 222 (2006)

    CAS  Google Scholar 

  167. Platt, S.R., Farritor, S., Haider, H.: IEEE/ASME Trans. Mechatron. 10, 240 (2005)

    Google Scholar 

  168. Silva, G.A.: Neuroscience nanotechnology: progress, opportunities and challenges. Nat. Rev. Neurosci. 7, 65–74 (2006)

    CAS  Google Scholar 

  169. Nandagopal, N., Elowitz, M.B.: Synthetic biology: integrated gene circuits. Science 333, 1244–1248 (2011)

    CAS  Google Scholar 

  170. Ruder, W.C., Lu, T., Collins, J.J.: Synthetic biology moving into the clinic. Science 333, 1248–1252 (2011)

    CAS  Google Scholar 

  171. Guo, L., Gao, Y., Xu, Y., Zhang, R., Madkour, L.H., Yang, Y.: Understanding the corrosion behavior of amorphous multiple-layer carbon coating. In: Advances In Materials, Machinery, Electronics II: Proceedings of the 2nd International Conference on Advances in Materials, Machinery, Electronics (AMME 2018), vol. 1955, 18 Apr 2018. AIP Conference Proceedings 1955, 020001 (2018). https://doi.org/10.1063/1.5033573, https://aip.scitation.org/doi/pdf/10.1063/1.5033573

  172. Madkour, L.H.: Applications of gold nanoparticles in medicine and therapy. Pharm. Pharmacol. Int. J. 6(3), 157–174. https://doi.org/10.15406/ppij.2018.06.00172, http://medcraveonline.com/PPIJ/PPIJ-06–00172.pdf (2018)

  173. Madkour, L.H.: Toxic effects of environmental heavy metals on cardiovascular pathophysiology and heart health function: chelation therapeutics. UPI J. Pharm. Med. Health Sci. (UPI-JPMHS) 1(1), 19–62. https://uniquepubinternational.com/wp-content/uploads/2018/03/UPI-JPMHS-2018-7.pdf (2018)

  174. Madkour, L.H.: Biogenic–biosynthesis metallic nanoparticles (MNPs) for pharmacological, biomedical and environmental nanobiotechnological applications. Chron. Pharm. Sci. J. 2(1), 384–444. https://scientiaricerca.com/srcops/SRCOPS-02-00038.php (2018)

  175. Madkour, L.H.: Ecofriendly green biosynthesized of metallic nanoparticles: Bio-reduction mechanism, characterization and pharmaceutical applications in biotechnology industry. Glob. Drugs Ther. 3(1), 1–11. http://www.oatext.com/ecofriendly-green-biosynthesized-of-metallic-nanoparticles-bio-reduction-mechanism-characterization-and-pharmaceutical-applications-in-biotechnology-industry.php (2018)

  176. Madkour, L.H.: Review Article: Advanced AuNMs as nanomedicine’s central goals capable of active targeting in both imaging and therapy in biomolecules. Glob. Drugs Ther. 2(6), 1–12. http://www.oatext.com/advanced-aunms-as-nanomedicines-central-goals-capable-of-active-targeting-in-both-imaging-and-therapy-in-biomolecules.php (2017)

  177. Madkour, L.H.: Biotechnology of nucleic acids medicines as gene therapeutics and their drug complexes. Chron. Pharm. Sci. J. 1(4), 204–253. https://scientiaricerca.com/srcops/pdf/SRCOPS-01–00023.pdf (2017)

  178. Madkour, L.H.: Advanced AuNMs as nanomedicine’s central goals capable of active targeting in both imaging and therapy in biomolecules. Bio Accent. Online BAOJ Nanotechnol. 3(1); 015, 1–18. https://bioaccent.org/nanotechnology/nanotechnology15.pdf (2017)

  179. Madkour, L.H.: Vision for life sciences: interfaces between nanoelectronic and biological systems. Glob. Drugs Ther. 2(4), 1–4. https://doi.org/10.15761/gdt.1000126, https://oatext.com/Vision-for-life-sciences-interfaces-between-nanoelectronic-and-biological-systems.php (2017)

  180. Foundation CaDR.: One Degree of Separation: Paralysis and Spinal Cord Injury in the United States (2010)

    Google Scholar 

  181. Singh, A., Tetrault, L., Kalsi-Ryan, S., Nouri, A., Fehlings, M.G.: Global prevalence and incidence of traumatic spinal cord injury. Clin. Epidemiol. 6, 209–331 (2014)

    Google Scholar 

  182. “Global Hearts”, a new initiative from the World Health Organization (WHO) (2016). New initiative launched to tackle cardiovascular disease, the world’s number one killer. Cardiovasc. Dis. http://www.who.int/cardiovascular_diseases/en/

  183. WHO Media Centre (2017) Cancer. http://www.who.int/mediacentre/factsheets/fs297/en/

  184. http://www.cancerresearchuk.org/

  185. Fujiwara, A., Hoshino, T., Westley, J.M.: Anthracycline antibiotics. Crit. Rev. Biotechnol. Anthracycline 3, 133 (1985)

    Google Scholar 

  186. Mele, D., Nardozza, M., Spallarossa, P., Frassoldati, A., Tocchetti, C.G., et al.: Current views on anthracycline cardiotoxicity. Heart Fail. Rev. 21, 621–634 (2016)

    CAS  Google Scholar 

  187. Kucharska, W., Negrusz-kawecka, M., Gromkowska, M.: Cardiotoxicity of oncological treatment in children. Adv. Clin. Exp. Med. 21, 281–288 (2012)

    Google Scholar 

  188. Hagen, E.M., Rekand, T., Gronning, M., Faerestrand, S.: Cardiovascular complications of spinal cord injury. Tidsskr. Nor. Laegeforen. 132, 1115–1120 (2012)

    Google Scholar 

  189. Kalisvaart, J.F., Katsumi, H.K., Ronningen, L.D., Hovey, R.M.: Bladder cancer in spinal cord injury patients. Spinal Cord 48, 257–261 (2010)

    CAS  Google Scholar 

  190. Kao, C.H., Sun, L.M., Chen, Y.S., Lin, C.L., Weng, M.W.: Risk of nongenitourinary cancers in patients with spinal cord injury—a population-based cohort study. Medicine 95, e2462 (2016)

    Google Scholar 

  191. Chen, J.J., Wu, P.T., Middlekauff, H.R., Nguyen, K.L.: Aerobic exercise in anthracycline-induced cardiotoxicity: a systematic review of current evidence and future directions. Am. J. Physiol. Heart Circ. Physiol. (2016) (ahead of print)

    Google Scholar 

  192. Smith, A.E., Molton, I.R., Jensen, M.P.: Self-reported incidence and age of onset of chronic comorbid medical conditions in adults aging with long-term physical disability. Disabil. Health J. 9, 533–538 (2016)

    Google Scholar 

  193. Guertin, P.A., Ung, R.V., Rouleau, P., Steuer, I.: Effects on locomotion, muscle, bone, and blood induced by a combination therapy eliciting weight-bearing stepping in nonassisted spinal cord-transected mice. Neurorehabil. Neural Repair 25, 234–242 (2011)

    Google Scholar 

  194. Radhakrishna, M., Steuer, I., Prince, F., Roberts, M., Mongeon, D., et al.: Double-blind, placebo-controlled, randomized phase I/IIa study (safety and efficacy) with buspirone/levodopa/carbidopa (Spinalon) in subjects with complete AIS A or motor-complete AIS B spinal cord injury. Curr. Pharm. Des. (2016) (Ahead of print)

    Google Scholar 

  195. Hofstoetter, U.S., Knikou, M., Guertin, P.A., Minassian, K.: Probing the human spinal locomotor circuits by phasic step-induced feedback and by tonic electrical and pharmacological neuromodulation. Curr. Pharm. Des. (2016) (Ahead of print)

    Google Scholar 

  196. Henninger, C., Fritz, G.: Statins in anthracycline-induced cardiotoxicity: Rac and Rho, and the heartbreakers. Cell Death Dis. 8, e2564 (2017)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Madkour, L.H. (2019). Interfacing Biology Systems with Nanoelectronics for Nanodevices. In: Nanoelectronic Materials. Advanced Structured Materials, vol 116. Springer, Cham. https://doi.org/10.1007/978-3-030-21621-4_17

Download citation

Publish with us

Policies and ethics