Skip to main content

Carbon Isotope Ratios in the Apatite-Protein Composites of Conodont Elements—Palaeobiological Proxy

Part of the Lecture Notes in Earth System Sciences book series (LNESS)

Abstract

Conodonts were the Palaeozoic and Triassic extinct group of the marine animals possessing discussed affinities. The only mineralized parts of conodonts are tooth-like elements composing feeding apparatus. The conodont elements are consisted of complex fluorapatite-protein nanocomposites. The mineral component of conodont elements is represented by apatite-(CaF) with minor content of CO3 ions, Na, and Sr. Organic matter is composed of protein(s), consisting less than 4% of a conodont element. The study material comprises conodont elements of the middle Frasnian genera Youngquistognathus and Mehlina, and latest Famennian-Tournaisian species: Polygnathus parapetus Druce, Hindeodus crassidentatus (Branson et Mehl), and Ligonodina sp. Conodont elements were used for analysis of composition of organic matter and apatite matrix, and organic carbon isotope values. Studied conodont elements are characterized by quite high Sr/Ca values in the albid tissue ranging from 0.002 up to 0.016 that is specific for marine animals of low trophic level. Low δ13Corg values in conodont elements ranging in wide interval from −30.4 up to −22.5‰ also suggest low trophic level of conodonts. Thus, data obtained advocate that conodonts were marine consumers of low trophic level feeding on phytoplankton or/and zooplankton. This conclusion promises possibilities to revise functional morphology of conodont elements and apparatuses, and elucidates significant biochemical differences between conodonts and marine vertebrates.

Keywords

  • Conodonts
  • Organic matter
  • Bioapatite
  • δ13corg
  • Sr/Ca ratio
  • Trophic specialization

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-21614-6_40
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-21614-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 40.1
Fig. 40.2
Fig. 40.3
Fig. 40.4
Fig. 40.5
Fig. 40.6

References

  • Bohata K, Koppelmann R (2013) Chaetognatha of the Namibian Upwelling Region: taxonomy, distribution and trophic position. PLoS ONE 8(1):e53839. https://doi.org/10.1371/journal.pone.0053839

    CrossRef  Google Scholar 

  • DeNiro MJ, Schoeninger MJ (1983) Stable carbon and nitrogen isotope ratios of bone collagen: variations within individuals, between sexes, and within populations raised on monotonous diets. J Archaeol Sci 10(3):199–203

    CrossRef  Google Scholar 

  • DeNiro MJ, Weiner S (1988) Chemical, enzymatic and spectroscopic characterization of “collagen” and other organic fractions from prehistoric bones. Geochim Cosmochim Acta 52:2197–2206

    CrossRef  Google Scholar 

  • Donoghue PCJ, Forey PL, Aldridge RJ (2000) Conodont affinity and chordate phylogeny. Biol Rev 75:191–251

    CrossRef  Google Scholar 

  • Frank-Kamenetskaya OV, Rozhdestvenskaya IV, Rosseeva EV, Zhuravlev AV (2014) Refinement of apatite atomic structure of albid tissue of Late Devon conodont. Crystallogr Rep 59(1):41–47

    CrossRef  Google Scholar 

  • Frushour BG, Koenig JL (1975) Raman scattering of collagen, gelatin, and elastin. Biopolymers 14(2):379–391

    CrossRef  Google Scholar 

  • Geeraert N, Omengo FO, Govers G, Bouillon S (2016) Dissolved organic carbon lability and stable isotope shifts during microbial decomposition in a tropical river system. Biogeosciences 13:517–525

    CrossRef  Google Scholar 

  • Harris AG, Sweet WC (1989) Mechanical and chemical techniques for separating microfossils from rock. Sediment and residue matrix. In: Chapman RE, Hannibal JT (eds) Paleotechniques. Paleontol Soc Spec Publ 4, pp 70–86

    CrossRef  Google Scholar 

  • Kasatkina AP, Buryi GI (1996) On the relation of chaetognaths and conodonts. Albertiana 18:21–23

    Google Scholar 

  • Katvala EC, Henderson CM (2012) Chemical element distributions within conodont elements and their functional implications. Paleobiology 38:447–458

    CrossRef  Google Scholar 

  • McKirdy DM, Powell TG (1974) Metamorphic alteration of carbon isotopic composition in ancient sedimentary organic matter: new evidence from Australia and South Africa. Geology 2(12):591–595

    CrossRef  Google Scholar 

  • Menges F (2018) Spectragryph-optical spectroscopy software, Version 1.2.8, 2018. http://www.effemm2.de/spectragryph/

  • Murdock DJE, Dong X-P, Repetski JE, Marone F, Stampanoni M, Donoghue PCJ (2013) The origin of conodonts and of vertebrate mineralized skeletons. Nature 502:546–549

    CrossRef  Google Scholar 

  • Nicholas C, Murray J, Goodhue R, Ditchfield P (2004) Nitrogen and carbon isotopes in conodonts: evidence of trophic levels and nutrient flux in Palaeozoic oceans. In: The Palaeontological Association 48th annual meeting, 17th–20th December 2004, University of Lille, Abstracts, pp 126–127

    Google Scholar 

  • O’Leary MH (1981) Carbon isotope fractionation in plants. Phytochemistry 20:553–567

    CrossRef  Google Scholar 

  • Over DJ, Grossman EL (1992) Carbon isotope analysis of conodont organic material—procedure and preliminary results. Geological Society of America, Abstracts with programs 24, p A214

    Google Scholar 

  • Peek S, Clementz MT (2012) Sr/Ca and Ba/Ca variations in environmental and biological sources: a survey of marine and terrestrial systems. Geochim Cosmochim Acta 95:36–52

    CrossRef  Google Scholar 

  • Purnell MA (1993) Feeding mechanisms in conodonts and the function of the earliest vertebrate hard tissues. Geology 21:375–377

    CrossRef  Google Scholar 

  • Purnell MA (1995) Microwear on conodont elements and macrophagy in the first vertebrates. Nature 374:798–800

    CrossRef  Google Scholar 

  • Purnell MA, Jones D (2012) Quantitative analysis of conodont tooth wear and damage as a test of ecological and functional hypotheses. Paleobiology 38:605–626

    CrossRef  Google Scholar 

  • Purnell MA, von Bitter PH (1992) Blade-shaped conodont elements functioned as cutting teeth. Nature 359:629–630

    CrossRef  Google Scholar 

  • Ramakrishnaiah R, Rehman G, Basavarajappa S, Al Khuraif AA, Durgesh BH, Khan AS, Rehman I (2015) Applications of Raman spectroscopy in dentistry: analysis of tooth structure. Appl Spectrosc Rev 50(4):332–350

    CrossRef  Google Scholar 

  • Rolinski T, Gawinkowski S, Kaminska A, Waluk J (2014) Raman spectra of solid amino acids: spectral correlation analysis as the first step towards identification by Raman spectroscopy. In: Baranska M (ed) Optical spectroscopy and computational methods in biology and medicine. Springer Science & Business Media, pp 329–354

    Google Scholar 

  • Rosseeva E, Borrmann H, Cardoso-Gil R, Carrillo-Cabrera W, Frank-Kamenetskaya OV, Öztan Y, Prots Y, Schwarz U, Simon P, Zhuravlev AV, Kniep R (2011) Evolution and complexity of dental (apatite-based) biominerals: mimicking the very beginning in the laboratory. Max-Planck-Institut für Chemische Physik fester Stoffe, Scientific report 2009–2010, pp 171–176

    Google Scholar 

  • Shirley B, Grohganz M, Bestmann M, Jarochowska E (2018) Wear, tear and systematic repair: testing models of growth dynamics in conodonts with high-resolution imaging. Proc R Soc B 285:20181614. https://doi.org/10.1098/rspb.2018.1614

    CrossRef  Google Scholar 

  • Sillen A (1986) Biogenic and diagenetic Sr/Ca in Plio-Pleistocene fossils of the Omo Shungura formation. Paleobiology 12:311–323

    CrossRef  Google Scholar 

  • Strauss H, Peters-Kottig W (2003) The Paleozoic to Mesozoic carbon cycle revisited: the carbon isotopic composition of terrestrial organic matter. Geochem Geophys Geosyst 4(10):1083. https://doi.org/10.1029/2003GC000555

    CrossRef  Google Scholar 

  • Tarasenko AB (2011) Tempestite beds in the Ilmen Clays of the Frasnian Stage of the Main Devonian Field (North-West of the East European Platform). Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki 153(4):260–266 (in Russian)

    Google Scholar 

  • Trotter JA, Eggins SM (2006) Chemical systematics of conodont apatite determined by laser ablation ICPMS. Chem Geol 233:196–216

    CrossRef  Google Scholar 

  • Trotter JA, Fitz Gerald JD, Kokkonen H, Barnes CR (2007) New insights into the ultrastructure, permeability, and integrity of conodont apatite determined by transmission electron microscopy. Lethaia 40:97–110

    CrossRef  Google Scholar 

  • Turner S, Burrow CJ, Schultze H-P, Blieck A, Reif W-E, Rexroad CB, Bultynck P, Nowlan GS (2010) False teeth: conodont-vertebrate phylogenetic relationships revisited. Geodiversitas 32(4):545–594

    CrossRef  Google Scholar 

  • Vevel’ YA, Zhuravlev AV, Popov VV (2012) Deposits of the Devonian and Carboniferous boundary in the Kamenka River section (Pechora-Kozhvinsky megaswell, Timan-Pechora province). Neftegazovaya geologia. Teoria i practika (RUS) 7(1). Available at: http://www.ngtp.ru/rub/2/6_2012.pdf (in Russian)

  • Zhuravlev AV (2002) A new type of conodont hard tissue. Lethaia 35(3):275–276

    CrossRef  Google Scholar 

  • Zhuravlev AV (2007) Morphofunctional analysis of late paleozoic conodont elements and apparatuses. Paleontol J 41(5):549–557

    CrossRef  Google Scholar 

  • Zhuravlev AV (2017) Structure of the organic matter of conodont elements: atomic force microscopy data. Vestnik IG Komi SC UB RAS 10:20–25 (in Russian)

    CrossRef  Google Scholar 

  • Zhuravlev AV (2018) Morphology of the pores-and-canals system in the albid tissue of some Late Devonian conodont elements. Vestnik IG Komi SC UB RAS 1:10–24 (in Russian)

    CrossRef  Google Scholar 

  • Zhuravlev AV, Gerasimova AI (2015) Albid tissue of the conodont elements: composition and forming model. Vestnik IG Komi SC UB RAS 10:21–27 (in Russian)

    CrossRef  Google Scholar 

  • Zhuravlev AV, Sapega VF (2007) XRD data on composition of the hard tissues of the Late Palaeozoic conodonts. In: Bio-inert interactions: life and rocks. Materials of the 3rd international symposium, VSEGEI, St Petersburg, 2007, pp 63–64 (in Russian)

    Google Scholar 

  • Zhuravlev AV, Shevchuk SS (2017) Strontium distribution in Upper Devonian conodont elements: a palaeobiological proxy. Riv It Paleontol Strat 123(2):203–210

    Google Scholar 

  • Zhuravlev A, Evdokimova I, Sokiran E (1997) New data on conodonts, brachiopods, and ostracodes from the stratotypes of the Ilmen and Buregi Beds (Frasnian, Main Devonian Field). Proceedings of the Estonian Academy of Sciences. Geology 46(4):169–186

    Google Scholar 

  • Zhuravlev AV, Kossovaya OL, Sobolev DB, Vevel YA (1998) Early Tournasian (Early Carconiferous) shallow water communities (eastern part of the Timan-Pechora Province). Ichthyolith Issues special Publication 4, pp 60–62

    Google Scholar 

Download references

Acknowledgements

Authors would like to thank Irina Smoleva and Alexander Shuyskiy for help in the geochemical and isotope study of conodont elements. Support for the analytical work was provided by CKP “Geonauka” of Institute of Geology Komi SC UrB RAS, Syktyvkar, Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey V. Zhuravlev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Zhuravlev, A.V., Plotitsyn, A.N., Gruzdev, D.A. (2020). Carbon Isotope Ratios in the Apatite-Protein Composites of Conodont Elements—Palaeobiological Proxy. In: Frank-Kamenetskaya, O., Vlasov, D., Panova, E., Lessovaia, S. (eds) Processes and Phenomena on the Boundary Between Biogenic and Abiogenic Nature. Lecture Notes in Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-21614-6_40

Download citation