Skip to main content

Applications of Hard and Soft Tissue Engineering in Dentistry

  • Chapter
  • First Online:
Book cover Applications of Biomedical Engineering in Dentistry

Abstract

Tissue engineering is a novel and multidisciplinary field that intends to remake functional, sound tissues and organs to supplant unhealthy or dead tissues. The advancement of tissue engineering for dental tissues is promising, and different dental soft and hard tissues have been regenerated effectively in vitro, utilizing stem cells and scaffolds. In almost any tissue engineering application, there are various challenges and unanswered inquiries that should be settled for further advancements. It is expected that in the next few decades, the field of dentistry will be altered remarkably by the accessibility of novel tissue-engineered products in the dental industry. This book chapter aims to address the advancement of tissue engineering for different dental hard and soft tissues, such as enamel, dentin, bone, periodontium, oral mucosa, and salivary glands. Additionally, challenges in the advancement of tissue engineering and future trends have been summarized in this book chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zafar, M. S., Khurshid, Z., & Almas, K. (2015). Oral tissue engineering progress and challenges. Tissue Engineering and Regenerative Medicine, 12(6), 387–397.

    Article  Google Scholar 

  2. Langer, R., & Vacanti, J. P. (1993). Tissue engineering. Science, 80(260), 920–926.

    Article  Google Scholar 

  3. Almela, T., Al-Sahaf, S., Brook, I. M., Khoshroo, K., Rasoulianboroujeni, M., Fahimipour, F., Tahriri, M., Dashtimoghadam, E., Bolt, R., Tayebi, L., & Moharamzadeh, K. (2018). 3D printed tissue engineered model for bone invasion of oral cancer. Tissue & Cell, 52, 71–77.

    Article  Google Scholar 

  4. Del Monico, M., Tahriri, M., Fahmy, M. D., Ghassemi, H., Vashaee, D., & Tayebi, L. (2018). Manufacturing, cartilage and facial muscle tissue engineering and regeneration: A mini review. Bio-Design and Manufacturing, 1(2), 115–122.

    Google Scholar 

  5. Del Monico, M., Tahriri, M., Nicholson, Z., Khoshroo, K., & Tayebi, L. (2018). Facial muscle tissue engineering. Biomaterials for Oral and Dental Tissue Engineering, 353–365.

    Google Scholar 

  6. Eslami, H., Lisar, H. A., Kashi, T. S. J., Tahriri, M., Ansari, M., Rafiei, T., Bastami, F., Shahin-Shamsabadi, A., Abbas, F. M., & Tayebi, L. (2018). Poly (lactic-co-glycolic acid)(PLGA)/TiO2 nanotube bioactive composite as a novel scaffold for bone tissue engineering: In vitro and in vivo studies. Biologicals, 53, 51–62.

    Article  Google Scholar 

  7. Jazayeri, H. E., Tahriri, M., Razavi, M., Khoshroo, K., Fahimipour, F., Dashtimoghadam, E., Almeida, L., & Tayebi, L. (2017). A current overview of materials and strategies for potential use in maxillofacial tissue regeneration. Materials Science & Engineering. C, Materials for Biological Applications, 70, 913–929.

    Article  Google Scholar 

  8. Khoshroo, K., Kashi, T. S. J., Moztarzadeh, F., Tahriri, M., Jazayeri, H. E., & Tayebi, L. (2017). Development of 3D PCL microsphere/TiO2 nanotube composite scaffolds for bone tissue engineering. Materials Science & Engineering. C, Materials for Biological Applications, 70, 586–598.

    Article  Google Scholar 

  9. Naghavi Alhosseini, S., Moztarzadeh, F., Kargozar, S., Dodel, M., & Tahriri, M. (2015). Development of polyvinyl alcohol fibrous biodegradable scaffolds for nerve tissue engineering applications: In vitro study. International Journal of Polymeric Materials and Polymeric Biomaterials, 64(9), 474–480.

    Article  Google Scholar 

  10. Nojehdehian, H., Moztarzadeh, F., Baharvand, H., Nazarian, H., & Tahriri, M. (2009). Preparation and surface characterization of poly-L-lysine-coated PLGA microsphere scaffolds containing retinoic acid for nerve tissue engineering: In vitro study. Colloids and Surfaces B: Biointerfaces, 73(1), 23–29.

    Article  Google Scholar 

  11. Touri, R., Moztarzadeh, F., Sadeghian, Z., Bizari, D., Tahriri, M., & Mozafari, M. (2013). The use of carbon nanotubes to reinforce 45S5 bioglass-based scaffolds for tissue engineering applications. BioMed Research International, 2013, 465086.

    Article  Google Scholar 

  12. Yadegari, A., Fahimipour, F., Rasoulianboroujeni, M., Dashtimoghadarm, E., Omidi, M., Golzar, H., Tahriri, M., & Tayebi, L. (2018). Specific considerations in scaffold design for oral tissue engineering. Biomaterials for Oral and Dental Tissue Engineering, 157–183.

    Google Scholar 

  13. Galler, K. M., D’Souza, R. N., & Hartgerink, J. D. (2010). Biomaterials and their potential applications for dental tissue engineering. Journal of Materials Chemistry, 20(40), 8730–8746.

    Article  Google Scholar 

  14. Shahin-Shamsabadi, A., Hashemi, A., & Tahriri, M. (2017). A viscoelastic study of poly (ε-Caprolactone) microsphere sintered bone tissue engineering scaffold. Journal of Medical and Biological Engineering 38(3), 359–369.

    Google Scholar 

  15. Fahimipour, F., Rasoulianboroujeni, M., Dashtimoghadam, E., Khoshroo, K., Tahriri, M., Bastami, F., Lobner, D., & Tayebi, L. (2017). 3D printed TCP-based scaffold incorporating VEGF-loaded PLGA microspheres for craniofacial tissue engineering. Dental Materials, 33(11), 1205–1216.

    Article  Google Scholar 

  16. Jazayeri, H. E., Fahimipour, F., Tahriri, M., Almeida, L., & Tayebi, L. (2018). Oral nerve tissue repair and regeneration. Biomaterials for Oral and Dental Tissue Engineering, 319–336.

    Google Scholar 

  17. Khojasteh, A., Fahimipour, F., Eslaminejad, M. B., Jafarian, M., Jahangir, S., Bastami, F., Tahriri, M., Karkhaneh, A., & Tayebi, L. (2016). Development of PLGA-coated β-TCP scaffolds containing VEGF for bone tissue engineering. Materials Science and Engineering: C, 69, 780–788.

    Article  Google Scholar 

  18. Khoshroo, K., Almela, T., Tahriri, M., Fahimipour, F., Metalwala, Z., Moharamzadeh, K., & Tayebi, L. (2016). 3D-printing of porous calcium phosphate cements for bone tissue engineering. Dental Materials, 32, e56–e57.

    Article  Google Scholar 

  19. Raz, M., Moztarzadeh, F., Shokrgozar, M. A., & Tahriri, M. (2014). Synthesis of nano calcium phosphate via biomimetic method for bone tissue engineering scaffolds and investigation of its phase transformation in simulated body fluid. Key Engineering Materials, Trans Tech Publications, 587, 86–92.

    Article  Google Scholar 

  20. Huang, G. T. (2009). Pulp and dentin tissue engineering and regeneration: Current progress. Regenerative Medicine, 4(5), 697–707.

    Article  Google Scholar 

  21. Ayati Najafabadi, S., Keshvari, H., Ganji, Y., Tahriri, M., & Ashuri, M. (2012). Chitosan/heparin surface modified polyacrylic acid grafted polyurethane film by two step plasma treatment. Surface Engineering, 28(9), 710–714.

    Article  Google Scholar 

  22. Davoudi, Z., Rabiee, M., Houshmand, B., Eslahi, N., Khoshroo, K., Rasoulianboroujeni, M., Tahriri, M., & Tayebi, L. (2018). Development of chitosan/gelatin/keratin composite containing hydrocortisone sodium succinate as a buccal mucoadhesive patch to treat desquamative gingivitis. Drug Development and Industrial Pharmacy, 44(1), 40–55.

    Article  Google Scholar 

  23. Emami, S. H., Abad, A. M. A., Bonakdar, S., Tahriri, M. R., Samadikuchaksaraei, A., & Bahar, M. A. (2010). Preparation and evaluation of chitosan-gelatin composite scaffolds modified with chondroitin-6-sulphate. International Journal of Materials Research, 101(10), 1281–1285.

    Article  Google Scholar 

  24. Heidari, F., Razavi, M., Bahrololoom, M. E., Tahriri, M., Rasoulianboroujeni, M., Koturi, H., & Tayebi, L. (2018). Preparation of natural chitosan from shrimp shell with different deacetylation degree. Materials Research Innovations, 22(3), 177–181.

    Article  Google Scholar 

  25. Heidari, F., Razavi, M., Bahrololoom, M. E., Tahriri, M., & Tayebi, L. (2018). Investigation of the mechanical properties and degradability of a modified chitosan-based scaffold. Materials Chemistry and Physics, 204, 187–194.

    Article  Google Scholar 

  26. Heidari, F., Razavi, M., Bahrololoom, M. E., Yazdimamaghani, M., Tahriri, M., Kotturi, H., & Tayebi, L. (2018). Evaluation of the mechanical properties, in vitro biodegradability and cytocompatibility of natural chitosan/hydroxyapatite/nano-Fe3O4 composite. Ceramics International, 44(1), 275–281.

    Article  Google Scholar 

  27. Nejat, H., Rabiee, M., Varshochian, R., Tahriri, M., Jazayeri, H. E., Rajadas, J., Ye, H., Cui, Z., & Tayebi, L. (2017). Preparation and characterization of cardamom extract-loaded gelatin nanoparticles as effective targeted drug delivery system to treat glioblastoma. Reactive and Functional Polymers, 120, 46–56.

    Article  Google Scholar 

  28. Raz, M., Moztarzadeh, F., Shokrgozar, M., Ashuri, M., & Tahriri, M. (2013). Preparation, characterization and evaluation of mechanical and biological characteristics of hybrid apatite/gelatin-chitosan nanocomposite bone scaffold via biomimetic method. Journal of Advanced Materials in Engineering (Esteghlal), 32(2), 25–42.

    Google Scholar 

  29. Raz, M., Moztarzadeh, F., Shokrgozar, M. A., Azami, M., & Tahriri, M. (2014). Development of biomimetic gelatin–chitosan/hydroxyapatite nanocomposite via double diffusion method for biomedical applications. International Journal of Materials Research, 105(5), 493–501.

    Article  Google Scholar 

  30. Zafar, M. S., & Al-Samadani, K. H. (2014). Potential use of natural silk for bio-dental applications. Journal of Taibah University Medical Sciences, 9(3), 171–177.

    Article  Google Scholar 

  31. Tahriri, M., Moztarzadeh, F., Hresko, K., Khoshroo, K., & Tayebi, L. (2016). Biodegradation properties of PLGA/nano-fluorhydroxyapatite composite microsphere-sintered scaffolds. Dental Materials, 32, e49–e50.

    Article  Google Scholar 

  32. Tahriri, M., & Moztarzadeh, F. (2014). Preparation, characterization, and in vitro biological evaluation of PLGA/nano-fluorohydroxyapatite (FHA) microsphere-sintered scaffolds for biomedical applications. Applied Biochemistry and Biotechnology, 172(5), 2465–2479.

    Article  Google Scholar 

  33. Zamani, Y., Rabiee, M., Shokrgozar, M. A., Bonakdar, S., & Tahriri, M. (2013). Response of human mesenchymal stem cells to patterned and randomly oriented poly (vinyl alcohol) nano-fibrous scaffolds surface-modified with Arg-Gly-Asp (RGD) ligand. Applied Biochemistry and Biotechnology, 171(6), 1513–1524.

    Article  Google Scholar 

  34. Tonomura, A., Mizuno, D., Hisada, A., Kuno, N., Ando, Y., Sumita, Y., Honda, M. J., Satomura, K., Sakurai, H., & Ueda, M. (2010). Differential effect of scaffold shape on dentin regeneration. Annals of Biomedical Engineering, 38(4), 1664–1671.

    Article  Google Scholar 

  35. Goyal, B., Tewari, S., Duhan, J., & Sehgal, P. (2011). Comparative evaluation of platelet-rich plasma and guided tissue regeneration membrane in the healing of apicomarginal defects: A clinical study. Journal of Endodontics, 37(6), 773–780.

    Article  Google Scholar 

  36. Ohara, T., Itaya, T., Usami, K., Ando, Y., Sakurai, H., Honda, M. J., Ueda, M., & Kagami, H. (2010). Evaluation of scaffold materials for tooth tissue engineering. Journal of Biomedical Materials Research Part A, 94(3), 800–805.

    Google Scholar 

  37. Lim, J.-Y., Yi, T., Choi, J.-S., Jang, Y. H., Lee, S., Kim, H. J., Song, S. U., & Kim, Y.-M. (2013). Intraglandular transplantation of bone marrow-derived clonal mesenchymal stem cells for amelioration of post-irradiation salivary gland damage. Oral Oncology, 49(2), 136–143.

    Article  Google Scholar 

  38. Kaigler, D., & Mooney, D. (2001). Tissue engineering’s impact on dentistry. Journal of Dental Education, 65(5), 456–462.

    Google Scholar 

  39. Nyman, S., Lindhe, J., Karring, T., & Rylander, H. (1982). New attachment following surgical treatment of human periodontal disease. Journal of Clinical Periodontology, 9(4), 290–296.

    Article  Google Scholar 

  40. Urist, M. R. (1965). Bone: Formation by autoinduction. Science, 150(3698), 893–899.

    Article  Google Scholar 

  41. Sheridan, M., Shea, L., Peters, M., & Mooney, D. (2000). Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery. Journal of Controlled Release, 64(1–3), 91–102.

    Article  Google Scholar 

  42. Neel, E. A. A., Chrzanowski, W., Salih, V. M., Kim, H.-W., & Knowles, J. C. (2014). Tissue engineering in dentistry. Journal of Dentistry, 42(8), 915–928.

    Article  Google Scholar 

  43. Young, C. S., Terada, S., Vacanti, J. P., Honda, M., Bartlett, J. D., & Yelick, P. C. (2002). Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. Journal of Dental Research, 81(10), 695–700.

    Article  Google Scholar 

  44. Duailibi, M. T., Duailibi, S. E., Young, C. S., Bartlett, J. D., Vacanti, J. P., & Yelick, P. C. (2004). Bioengineered teeth from cultured rat tooth bud cells. Journal of Dental Research, 83(7), 523–528.

    Article  Google Scholar 

  45. Xu, W.-P., Zhang, W., Asrican, R., Kim, H.-J., Kaplan, D. L., & Yelick, P. C. (2008). Accurately shaped tooth bud cell–derived mineralized tissue formation on silk scaffolds. Tissue Engineering Part A, 14(4), 549–557.

    Article  Google Scholar 

  46. Nakao, K., Morita, R., Saji, Y., Ishida, K., Tomita, Y., Ogawa, M., Saitoh, M., Tomooka, Y., & Tsuji, T. (2007). The development of a bioengineered organ germ method. Nature Methods, 4(3), 227.

    Article  Google Scholar 

  47. Thomas, M., Grande, D., & Haug, R. H. (1991). Development of an in vitro temporomandibular joint cartilage analog. Journal of Oral and Maxillofacial Surgery, 49(8), 854–856.

    Article  Google Scholar 

  48. Puelacher, W. C., Wisser, J., Vacanti, C. A., Ferraro, N. F., Jaramillo, D., & Vacanti, J. P. (1994). Temporomandibular joint disc replacement made by tissue-engineered growth of cartilage. Journal of Oral and Maxillofacial Surgery, 52(11), 1172–1177.

    Article  Google Scholar 

  49. Abukawa, H., Terai, H., Hannouche, D., Vacanti, J. P., Kaban, L. B., & Troulis, M. J. (2003). Formation of a mandibular condyle in vitro by tissue engineering. Journal of Oral and Maxillofacial Surgery, 61(1), 94–100.

    Article  Google Scholar 

  50. Weng, Y., Cao, Y., Arevalo, C., Vacanti, M. P., & Vacanti, C. A. (2001). Tissue-engineered composites of bone and cartilage for mandible condylar reconstruction. Journal of Oral and Maxillofacial Surgery, 59(2), 185–190.

    Article  Google Scholar 

  51. Fan, Y., Sun, Z., & Moradian-Oldak, J. (2009). Controlled remineralization of enamel in the presence of amelogenin and fluoride. Biomaterials, 30(4), 478–483.

    Article  Google Scholar 

  52. Nakashima, M. (1990). The induction of reparative dentine in the amputated dental pulp of the dog by bone morphogenetic protein. Archives of Oral Biology, 35(7), 493–497.

    Article  Google Scholar 

  53. Lianjia, Y., Yuhao, G., & White, F. H. (1993). Bovine bone morphogenetic protein-induced dentinogenesis. Clinical Orthopaedics and Related Research, (295), 305–312.

    Google Scholar 

  54. Caton, J. G., & Greenstein, G. (1993). Factors related to periodontal regeneration. Periodontology 2000, 1, 9–15.

    Article  Google Scholar 

  55. Villar, C. C., & Cochran, D. L. (2010). Regeneration of periodontal tissues: Guided tissue regeneration. Dental Clinics, 54(1), 73–92.

    Google Scholar 

  56. Nevins, M., Giannobile, W. V., McGuire, M. K., Kao, R. T., Mellonig, J. T., Hinrichs, J. E., McAllister, B. S., Murphy, K. S., McClain, P. K., & Nevins, M. L. (2005). Platelet-derived growth factor stimulates bone fill and rate of attachment level gain: Results of a large multicenter randomized controlled trial. Journal of Periodontology, 76(12), 2205–2215.

    Article  Google Scholar 

  57. Alsberg, E., Hill, E., & Mooney, D. (2001). Craniofacial tissue engineering. Critical Reviews in Oral Biology & Medicine, 12(1), 64–75.

    Article  Google Scholar 

  58. Nevins, M., Camelo, M., Nevins, M. L., Schenk, R. K., & Lynch, S. E. (2003). Periodontal regeneration in humans using recombinant human platelet-derived growth factor-BB (rhPDGF-BB) and allogenic bone. Journal of Periodontology, 74(9), 1282–1292.

    Article  Google Scholar 

  59. Hotta, T., Yokoo, S., Terashi, H., & Komori, T. (2007). Clinical and histopathological analysis of healing process of intraoral reconstruction with ex vivo produced oral mucosa equivalent. The Kobe Journal of Medical Sciences, 53(1–2), 1–14.

    Google Scholar 

  60. Moharamzadeh, K., Brook, I., Van Noort, R., Scutt, A., & Thornhill, M. (2007). Tissue-engineered oral mucosa: A review of the scientific literature. Journal of Dental Research, 86(2), 115–124.

    Article  Google Scholar 

  61. Sauerbier, S., Gutwald, R., Wiedmann-Al-Ahmad, M., Lauer, G., & Schmelzeisen, R. (2006). Clinical application of tissue-engineered transplants. Part I: Mucosa. Clinical Oral Implants Research, 17(6), 625–632.

    Article  Google Scholar 

  62. Baum, B., & O’connell, B. (1999). In vivo gene transfer to salivary glands. Critical Reviews in Oral Biology & Medicine, 10(3), 276–283.

    Article  Google Scholar 

  63. Baum, B. J., Wang, S., Cukierman, E., Delporte, C., Kagami, H., Marmary, Y., Fox, P. C., Mooney, D. J., & Yamada, K. M. (1999). Re-engineering the functions of a terminally differentiated epithelial cell in vivo. Annals of the New York Academy of Sciences, 875(1), 294–300.

    Article  Google Scholar 

  64. Bailey, M. M., Wang, L., Bode, C. J., Mitchell, K. E., & Detamore, M. S. (2007). A comparison of human umbilical cord matrix stem cells and temporomandibular joint condylar chondrocytes for tissue engineering temporomandibular joint condylar cartilage. Tissue Engineering, 13(8), 2003–2010.

    Article  Google Scholar 

  65. Schek, R., Taboas, J., Hollister, S. J., & Krebsbach, P. (2005). Tissue engineering osteochondral implants for temporomandibular joint repair. Orthodontics & Craniofacial Research, 8(4), 313–319.

    Article  Google Scholar 

  66. Ikada, Y. (2006). Challenges in tissue engineering. Journal of the Royal Society Interface, 3(10), 589–601.

    Article  Google Scholar 

  67. Lo, B., & Parham, L. (2009). Ethical issues in stem cell research. Endocrine Reviews, 30(3), 204–213.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lobat Tayebi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tahriri, M. et al. (2020). Applications of Hard and Soft Tissue Engineering in Dentistry. In: Tayebi, L. (eds) Applications of Biomedical Engineering in Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-030-21583-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21583-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21582-8

  • Online ISBN: 978-3-030-21583-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics