Skip to main content

Injectable Gels for Dental and Craniofacial Applications

  • Chapter
  • First Online:
Book cover Applications of Biomedical Engineering in Dentistry

Abstract

The use of injectable scaffolds is considered a promising approach in craniofacial tissue regeneration, as they can be introduced with minimally invasive surgery, thus reducing the risk of surgery complications and improving postoperative recovery. In this chapter, comprehensive descriptions of chemically and physically cross-linked hydrogels that can be used as injectable scaffolds for dental and craniofacial application are presented. Nanocomposite hydrogels, in which nano-sized particles may serve as reinforcing agents and impart functionality to the hydrogels, are also discussed. Special attention is given to peptide amphiphiles which can self-assemble into supramolecular configuration mimicking the extracellular matrix (ECM) structure. Finally, injectable microspheres and different techniques of fabrication are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Brien, F. J. (2011). Biomaterials & scaffolds for tissue engineering. Materials Today, 14, 88–95.

    Article  Google Scholar 

  2. Guyot, C., & Lerouge, S. (2018). Can we achieve the perfect injectable scaffold for cell therapy? Future Science OA, 4, FSO284.

    Article  Google Scholar 

  3. Hou, Q., De Bank, P. A., & Shakesheff, K. M. (2004). Injectable scaffolds for tissue regeneration. ChemInform, Journal of Materials Chemistry, 14, 1915–1923.

    Google Scholar 

  4. Kretlow, J. D., Klouda, L., & Mikos, A. G. (2007). Injectable matrices and scaffolds for drug delivery in tissue engineering. Advanced Drug Delivery Reviews, 59, 263–273.

    Article  Google Scholar 

  5. Chang, B., Ahuja, N., Ma, C., & Liu, X. (2017). Injectable scaffolds: Preparation and application in dental and craniofacial regeneration. Materials Science & Engineering R: Reports, 111, 1–26.

    Article  Google Scholar 

  6. Drury, J. L., & Mooney, D. J. (2003). Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials, 24, 4337–4351.

    Article  Google Scholar 

  7. Taylor, P. M. (2007). Biological matrices and bionanotechnology. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362, 1313–1320.

    Article  Google Scholar 

  8. Langer, R., & Tirrell, D. A. (2004). Designing materials for biology and medicine. Nature, 428, 487–492.

    Article  Google Scholar 

  9. Ratner, B. D., Hoffman, A. S., Schoen, F. J., & Lemons, J. E. (2012). Biomaterials science: An introduction to materials in medicine. Amsterdam: Academic Press.

    Google Scholar 

  10. Silva, S. S., Mano, J. F., & Reis, R. L. (2010). Potential applications of natural origin polymer-based systems in soft tissue regeneration. Critical Reviews in Biotechnology, 30, 200–221.

    Article  Google Scholar 

  11. Tan, H., Wan, L., Wu, J., & Gao, C. (2008). Microscale control over collagen gradient on poly(L-lactide) membrane surface for manipulating chondrocyte distribution. Colloids and Surfaces. B, Biointerfaces, 67, 210–215.

    Article  Google Scholar 

  12. Guarino, V., Gloria, A., De Santis, R., & Ambrosio, L. (2010). Composite hydrogels for scaffold design, tissue engineering, and prostheses. In Biomedical applications of hydrogels handbook (pp. 227–245). New York: Springer.

    Chapter  Google Scholar 

  13. Mueller, S. M., et al. (1999). Meniscus cells seeded in type I and type II collagen-GAG matrices in vitro. Biomaterials, 20, 701–709.

    Article  Google Scholar 

  14. Tan, H., Huang, D., Lao, L., & Gao, C. (2009). RGD modified PLGA/gelatin microspheres as microcarriers for chondrocyte delivery. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 91, 228–238.

    Article  Google Scholar 

  15. Sumita, Y., et al. (2006). Performance of collagen sponge as a 3-D scaffold for tooth-tissue engineering. Biomaterials, 27, 3238–3248.

    Article  Google Scholar 

  16. Zhang, W., et al. (2006). The performance of human dental pulp stem cells on different three-dimensional scaffold materials. Biomaterials, 27, 5658–5668.

    Article  Google Scholar 

  17. Khor, E. (2010). Medical applications of chitin and chitosan. In Chitin, chitosan, oligosaccharides and their derivatives (pp. 405–413). Boca Raton: CRC Press.

    Chapter  Google Scholar 

  18. Qasim, S., et al. (2018). Electrospinning of chitosan-based solutions for tissue engineering and regenerative medicine. International Journal of Molecular Sciences, 19, 407.

    Article  Google Scholar 

  19. Hao, T., et al. (2010). The support of matrix accumulation and the promotion of sheep articular cartilage defects repair in vivo by chitosan hydrogels. Osteoarthritis and Cartilage, 18, 257–265.

    Article  Google Scholar 

  20. Tan, H., Chu, C. R., Payne, K. A., & Marra, K. G. (2009). Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials, 30, 2499–2506.

    Article  Google Scholar 

  21. Zhang, Y., et al. (2006). Novel chitosan/collagen scaffold containing transforming growth factor-β1 DNA for periodontal tissue engineering. Biochemical and Biophysical Research Communications, 344, 362–369.

    Article  Google Scholar 

  22. Kogan, G., Soltés, L., Stern, R., & Gemeiner, P. (2007). Hyaluronic acid: A natural biopolymer with a broad range of biomedical and industrial applications. Biotechnology Letters, 29, 17–25.

    Article  Google Scholar 

  23. Fraser, J. R. E., & Laurent, T. C. (2007). Turnover and metabolism of hyaluronan. In Novartis Foundation Symposia (pp. 41–59). Chichester: Wiley.

    Google Scholar 

  24. Inuyama, Y., et al. (2010). Effects of hyaluronic acid sponge as a scaffold on odontoblastic cell line and amputated dental pulp. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 92B, 120–128.

    Article  Google Scholar 

  25. Chang, C.-H., et al. (2006). Tissue engineering-based cartilage repair with allogenous chondrocytes and gelatin-chondroitin-hyaluronan tri-copolymer scaffold: A porcine model assessed at 18, 24, and 36 weeks. Biomaterials, 27, 1876–1888.

    Article  Google Scholar 

  26. Seal, B. (2001). Polymeric biomaterials for tissue and organ regeneration. Materials Science & Engineering R: Reports, 34, 147–230.

    Article  Google Scholar 

  27. Sun, J., & Tan, H. (2013). Alginate-based biomaterials for regenerative medicine applications. Materials, 6, 1285–1309.

    Article  Google Scholar 

  28. Boontheekul, T., Kong, H.-J., & Mooney, D. J. (2005). Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials, 26, 2455–2465.

    Article  Google Scholar 

  29. Kang, E., et al. (2012). Microfluidic spinning of flat alginate fibers with grooves for cell-aligning scaffolds. Advanced Materials, 24, 4271–4277.

    Article  Google Scholar 

  30. Kumabe, S., et al. (2006). Human dental pulp cell culture and cell transplantation with an alginate scaffold. Okajimas Folia Anatomica Japonica, 82, 147–155.

    Article  Google Scholar 

  31. Fujiwara, S., Kumabe, S., & Iwai, Y. (2006). Isolated rat dental pulp cell culture and transplantation with an alginate scaffold. Okajimas Folia Anatomica Japonica, 83, 15–24.

    Article  Google Scholar 

  32. Nguyen, M. K., & Lee, D. S. (2010). Injectable biodegradable hydrogels. Macromolecular Bioscience, 10, 563–579.

    Article  Google Scholar 

  33. Li, Y., Rodrigues, J., & Tomás, H. (2012). Injectable and biodegradable hydrogels: Gelation, biodegradation and biomedical applications. Chemical Society Reviews, 41, 2193–2221.

    Article  Google Scholar 

  34. Yu, L., & Ding, J. (2008). Injectable hydrogels as unique biomedical materials. Chemical Society Reviews, 37, 1473–1481.

    Article  Google Scholar 

  35. Bidarra, S. J., Barrias, C. C., & Granja, P. L. (2014). Injectable alginate hydrogels for cell delivery in tissue engineering. Acta Biomaterialia, 10, 1646–1662.

    Article  Google Scholar 

  36. Yang, J.-A., Yeom, J., Hwang, B. W., Hoffman, A. S., & Hahn, S. K. (2014). In situ-forming injectable hydrogels for regenerative medicine. Progress in Polymer Science, 39, 1973–1986.

    Article  Google Scholar 

  37. Caló, E., & Khutoryanskiy, V. V. (2015). Biomedical applications of hydrogels: A review of patents and commercial products. European Polymer Journal, 65, 252–267.

    Article  Google Scholar 

  38. Nguyen, K. T., & West, J. L. (2002). Photopolymerizable hydrogels for tissue engineering applications. Biomaterials, 23, 4307–4314.

    Article  Google Scholar 

  39. Nguyen, Q. V., Huynh, D. P., Park, J. H., & Lee, D. S. (2015). Injectable polymeric hydrogels for the delivery of therapeutic agents: A review. European Polymer Journal, 72, 602–619.

    Article  Google Scholar 

  40. Nicodemus, G. D., Villanueva, I., & Bryant, S. J. (2007). Mechanical stimulation of TMJ condylar chondrocytes encapsulated in PEG hydrogels. Journal of Biomedical Materials Research. Part A, 83, 323–331.

    Article  Google Scholar 

  41. Davis, K. A., Burdick, J. A., & Anseth, K. S. (2003). Photoinitiated crosslinked degradable copolymer networks for tissue engineering applications. Biomaterials, 24, 2485–2495.

    Article  Google Scholar 

  42. Thirumurugan, P., Matosiuk, D., & Jozwiak, K. (2013). Click chemistry for drug development and diverse chemical–biology applications. Chemical Reviews, 113, 4905–4979.

    Article  Google Scholar 

  43. Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click chemistry: Diverse chemical function from a few good reactions. Angewandte Chemie (International Ed. in English), 40, 2004–2021.

    Article  Google Scholar 

  44. Nandivada, H., Jiang, X., & Lahann, J. (2007). Click chemistry: Versatility and control in the hands of materials scientists. Advanced Materials, 19, 2197–2208.

    Article  Google Scholar 

  45. Park, S. H., et al. (2017). BMP2-modified injectable hydrogel for osteogenic differentiation of human periodontal ligament stem cells. Scientific Reports, 7, 6603.

    Article  Google Scholar 

  46. Mather, B. D., Viswanathan, K., Miller, K. M., & Long, T. E. (2006). Michael addition reactions in macromolecular design for emerging technologies. Progress in Polymer Science, 31, 487–531.

    Article  Google Scholar 

  47. Li, R., et al. (2017). Synthesis of in-situ formable hydrogels with collagen and hyaluronan through facile Michael addition. Materials Science & Engineering. C, Materials for Biological Applications, 77, 1035–1043.

    Article  Google Scholar 

  48. Liu, M., et al. (2017). Injectable hydrogels for cartilage and bone tissue engineering. Bone Research, 5, 17014.

    Article  Google Scholar 

  49. Teixeira, L. S. M., Feijen, J., van Blitterswijk, C. A., Dijkstra, P. J., & Karperien, M. (2012). Enzyme-catalyzed crosslinkable hydrogels: Emerging strategies for tissue engineering. Biomaterials, 33, 1281–1290.

    Article  Google Scholar 

  50. Sperinde, J. J., & Griffith, L. G. (2000). Control and prediction of gelation kinetics in enzymatically cross-linked poly(ethylene glycol) hydrogels. Macromolecules, 33, 5476–5480.

    Article  Google Scholar 

  51. Parhi, R. (2017). Cross-linked hydrogel for pharmaceutical applications: A review. Advanced Pharmaceutical Bulletin, 7, 515–530.

    Article  Google Scholar 

  52. Xin, Y., & Yuan, J. (2012). Schiff’s base as a stimuli-responsive linker in polymer chemistry. Polymer Chemistry, 3, 3045–3055.

    Article  Google Scholar 

  53. Hoffmann, B., et al. (2009). Characterisation of a new bioadhesive system based on polysaccharides with the potential to be used as bone glue. Journal of Materials Science. Materials in Medicine, 20, 2001–2009.

    Article  Google Scholar 

  54. Wu, Y., et al. (2017). A soft tissue adhesive based on aldehyde-sodium alginate and amino-carboxymethyl chitosan preparation through the Schiff reaction. Frontiers of Materials Science, 11, 215–222.

    Article  Google Scholar 

  55. Klouda, L. (2015). Thermoresponsive hydrogels in biomedical applications: A seven-year update. European Journal of Pharmaceutics and Biopharmaceutics, 97, 338–349.

    Article  Google Scholar 

  56. Boustta, M., Colombo, P.-E., Lenglet, S., Poujol, S., & Vert, M. (2014). Versatile UCST-based thermoresponsive hydrogels for loco-regional sustained drug delivery. Journal of Controlled Release, 174, 1–6.

    Article  Google Scholar 

  57. Haq, M. A., Su, Y., & Wang, D. (2017). Mechanical properties of PNIPAM based hydrogels: A review. Materials Science & Engineering. C, Materials for Biological Applications, 70, 842–855.

    Article  Google Scholar 

  58. Jain, K., Vedarajan, R., Watanabe, M., Ishikiriyama, M., & Matsumi, N. (2015). Tunable LCST behavior of poly (N-isopropylacrylamide/ionic liquid) copolymers. Polymer Chemistry, 6, 6819–6825.

    Article  Google Scholar 

  59. Xie, J., Li, A., & Li, J. (2017). Advances in pH-sensitive polymers for smart insulin delivery. Macromolecular Rapid Communications, 38, 1700413.

    Article  MathSciNet  Google Scholar 

  60. Rizwan, M., et al. (2017). pH sensitive hydrogels in drug delivery: Brief history, properties, swelling, and release mechanism, material selection and applications. Polymers, 9, 137.

    Article  Google Scholar 

  61. Liu, Y.-Y., et al. (2006). pH-responsive amphiphilic hydrogel networks with IPN structure: A strategy for controlled drug release. International Journal of Pharmaceutics, 308, 205–209.

    Article  Google Scholar 

  62. Wang, K., Fu, Q., Chen, X., Gao, Y., & Dong, K. (2012). Preparation and characterization of pH-sensitive hydrogel for drug delivery system. RSC Advances, 2, 7772–7780.

    Article  Google Scholar 

  63. Draget, K. I., Skjåk-Braek, G., & Smidsrød, O. (1997). Alginate based new materials. International Journal of Biological Macromolecules, 21, 47–55.

    Article  Google Scholar 

  64. Russo, R., Malinconico, M., & Santagata, G. (2007). Effect of cross-linking with calcium ions on the physical properties of alginate films. Biomacromolecules, 8, 3193–3197.

    Article  Google Scholar 

  65. Donati, I., Asaro, F., & Paoletti, S. (2009). Experimental evidence of counterion affinity in alginates: The case of nongelling ion Mg2+. The Journal of Physical Chemistry. B, 113, 12877–12886.

    Article  Google Scholar 

  66. Sun, J.-Y., et al. (2012). Highly stretchable and tough hydrogels. Nature, 489, 133–136.

    Article  Google Scholar 

  67. Wang, M. S., Childs, R. F., & Chang, P. L. (2005). A novel method to enhance the stability of alginate-poly-L-lysine-alginate microcapsules. Journal of Biomaterials Science. Polymer Edition, 16, 91–113.

    Google Scholar 

  68. Song, F., Li, X., Wang, Q., Liao, L., & Zhang, C. (2015). Nanocomposite hydrogels and their applications in drug delivery and tissue engineering. Journal of Biomedical Nanotechnology, 11, 40–52.

    Article  Google Scholar 

  69. Gaharwar, A. K., Peppas, N. A., & Khademhosseini, A. (2014). Nanocomposite hydrogels for biomedical applications. Biotechnology and Bioengineering, 111, 441–453.

    Article  Google Scholar 

  70. Nejadnik, M. R., et al. (2014). Self-healing hybrid nanocomposites consisting of bisphosphonated hyaluronan and calcium phosphate nanoparticles. Biomaterials, 35, 6918–6929.

    Article  Google Scholar 

  71. Martínez-Sanz, E., et al. (2012). Minimally invasive mandibular bone augmentation using injectable hydrogels. Journal of Tissue Engineering and Regenerative Medicine, 6, s15–s23.

    Article  Google Scholar 

  72. Gaharwar, A. K., Rivera, C. P., Wu, C.-J., & Schmidt, G. (2011). Transparent, elastomeric and tough hydrogels from poly(ethylene glycol) and silicate nanoparticles. Acta Biomaterialia, 7, 4139–4148.

    Article  Google Scholar 

  73. Dvir, T., Timko, B. P., Kohane, D. S., & Langer, R. (2011). Nanotechnological strategies for engineering complex tissues. Nature Nanotechnology, 6, 13–22.

    Article  Google Scholar 

  74. Thomas, D., Gaspar, D., & Sorushanova, A. (2016). Scaffold and scaffold-free self-assembled systems in regenerative medicine. Biotechnology, 113, 1155–1163.

    Google Scholar 

  75. Matson, J. B., & Stupp, S. I. (2012). Self-assembling peptide scaffolds for regenerative medicine. Chemical Communications, 48, 26–33.

    Article  Google Scholar 

  76. Rosa, V., Zhang, Z., Grande, R. H. M., & Nör, J. E. (2013). Dental pulp tissue engineering in full-length human root canals. Journal of Dental Research, 92, 970–975.

    Article  Google Scholar 

  77. Cavalcanti, B. N., Zeitlin, B. D., & Nör, J. E. (2013). A hydrogel scaffold that maintains viability and supports differentiation of dental pulp stem cells. Dental Materials, 29, 97–102.

    Article  Google Scholar 

  78. Galler, K. M., et al. (2008). Self-assembling peptide amphiphile nanofibers as a scaffold for dental stem cells. Tissue Engineering. Part A, 14, 2051–2058.

    Article  Google Scholar 

  79. Gupta, V., Khan, Y., Berkland, C. J., Laurencin, C. T., & Detamore, M. S. (2017). Microsphere-based scaffolds in regenerative engineering. Annual Review of Biomedical Engineering, 19, 135–161.

    Article  Google Scholar 

  80. Hossain, K., Patel, U., & Ahmed, I. (2015). Development of microspheres for biomedical applications: A review. Progress in Biomaterials, 4, 1–19.

    Article  Google Scholar 

  81. Leong, W., & Wang, D. A. (2015). Cell-laden polymeric microspheres for biomedical applications. Trends in Biotechnology, 33, 653–666.

    Article  Google Scholar 

  82. Wang, H., Leeuwenburgh, S., & Li, Y. (2011). The use of micro-and nanospheres as functional components for bone tissue regeneration. Engineering Part B: Reviews, 18, 24–39.

    Article  Google Scholar 

  83. Hernández, R. M., Orive, G., Murua, A., & Pedraz, J. L. (2010). Microcapsules and microcarriers for in situ cell delivery. Advanced Drug Delivery Reviews, 62, 711–730.

    Article  Google Scholar 

  84. Rokstad, A., Lacík, I., de Vos, P., & Strand, B. L. (2014). Advances in biocompatibility and physico-chemical characterization of microspheres for cell encapsulation. Advanced Drug Delivery Reviews, 67, 111–130.

    Article  Google Scholar 

  85. Tang, G., et al. (2012). Preparation of PLGA scaffolds with graded pores by using a gelatin-microsphere template as Porogen. Journal of Biomaterials Science. Polymer Edition, 23, 2241–2257.

    Google Scholar 

  86. Matsuno, T., Hashimoto, Y., Adachi, S., & Omata, K. (2008). Preparation of injectable 3D-formed β-tricalcium phosphate bead/alginate composite for bone tissue engineering. Dental Materials, 27, 827–834.

    Article  Google Scholar 

  87. Huang, W., Li, X., Shi, X., & Lai, C. (2014). Microsphere based scaffolds for bone regenerative applications. Biomaterials Science, 2, 1145.

    Article  Google Scholar 

  88. Zhang, Z., Eyster, T. W., & Ma, P. X. (2016). Nanostructured injectable cell microcarriers for tissue regeneration. Nanomedicine, 11, 1611–1628.

    Article  Google Scholar 

  89. McGinity, J. W., & O’Donnell, P. B. (1997). Preparation of microspheres by the solvent evaporation technique. Advanced Drug Delivery Reviews, 28, 25–42.

    Article  Google Scholar 

  90. Nava-Arzaluz, M. G., Piñón-Segundo, E., Ganem-Rondero, A., & Lechuga-Ballesteros, D. (2012). Single emulsion-solvent evaporation technique and modifications for the preparation of pharmaceutical polymeric nanoparticles. Recent Patents on Drug Delivery & Formulation, 6, 209–223.

    Article  Google Scholar 

  91. Xia, Y., & Pack, D. W. (2015). Uniform biodegradable microparticle systems for controlled release. Chemical Engineering Science, 125, 129–143.

    Article  Google Scholar 

  92. Berkland, C., King, M., Cox, A., Kim, K., & Pack, D. W. (2002). Precise control of PLG microsphere size provides enhanced control of drug release rate. Journal of Controlled Release, 82, 137–147.

    Article  Google Scholar 

  93. Paudel, A., Worku, Z. A., Meeus, J., Guns, S., & Van den Mooter, G. (2013). Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: Formulation and process considerations. International Journal of Pharmaceutics, 453, 253–284.

    Article  Google Scholar 

  94. Cal, K., & Sollohub, K. (2010). Spray drying technique. I: Hardware and process parameters. Journal of Pharmaceutical Sciences, 99, 575–586.

    Article  Google Scholar 

  95. Blaker, J. J., Knowles, J. C., & Day, R. M. (2008). Novel fabrication techniques to produce microspheres by thermally induced phase separation for tissue engineering and drug delivery. Acta Biomaterialia, 4, 264–272.

    Article  Google Scholar 

  96. Feng, W., et al. (2015). Synthesis and characterization of nanofibrous hollow microspheres with tunable size and morphology via thermally induced phase separation technique. RSC Advances, 5, 61580–61585.

    Article  Google Scholar 

  97. Liu, X., Jin, X., & Ma, P. X. (2011). Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repair. Nature Materials, 10, 398–406.

    Article  Google Scholar 

  98. Kuang, R., et al. (2016). Nanofibrous spongy microspheres for the delivery of hypoxia-primed human dental pulp stem cells to regenerate vascularized dental pulp. Acta Biomaterialia, 33, 225–234.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed S. Ibrahim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ibrahim, M.S., El-Wassefy, N.A., Farahat, D.S. (2020). Injectable Gels for Dental and Craniofacial Applications. In: Tayebi, L. (eds) Applications of Biomedical Engineering in Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-030-21583-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21583-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21582-8

  • Online ISBN: 978-3-030-21583-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics