Advertisement

Improving Saturation Efficiency with Implicit Relations

  • Shruti BiswalEmail author
  • Andrew S. Miner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11522)

Abstract

Decision diagrams are a well-established data structure for reachability set generation and model checking of high-level models such as Petri nets, due to their versatility and the availability of efficient algorithms for their construction. Using a decision diagram to represent the transition relation of each event of the high-level model, the saturation algorithm can be used to construct a decision diagram representing all states reachable from an initial set of states, via the occurrence of zero or more events. A difficulty arises in practice for models whose state variable bounds are unknown, as the transition relations cannot be constructed before the bounds are known. Previously, on-the-fly approaches have constructed the transition relations along with the reachability set during the saturation procedure. This can affect performance, as the transition relation decision diagrams must be rebuilt, and compute-table entries may need to be discarded, as the size of each state variable increases. In this paper, we introduce a different approach based on an implicit and unchanging representation for the transition relations, thereby avoiding the need to reconstruct the transition relations and discard compute-table entries. We modify the saturation algorithm to use this new representation, and demonstrate its effectiveness with experiments on several benchmark models.

Keywords

Petri nets Decision diagram Saturation Reachability set generation 

Notes

Acknowledgment

This work was supported in part by the National Science Foundation under grant ACI-1642397.

References

  1. 1.
    MCC: Model Checking Competition @ Petri Nets. https://mcc.lip6.fr
  2. 2.
  3. 3.
    Babar, J., Miner, A.S.: Meddly: multi-terminal and Edge-valued Decision Diagram LibrarY. In: Proceedings of QEST, pp. 195–196. IEEE Computer Society (2010)Google Scholar
  4. 4.
    Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision diagrams. ACM Comput. Surv. 24(3), 293–318 (1992)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chung, M.-Y., Ciardo, G., Yu, A.J.: A fine-grained fullness-guided chaining heuristic for symbolic reachability analysis. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp. 51–66. Springer, Heidelberg (2006).  https://doi.org/10.1007/11901914_7CrossRefGoogle Scholar
  6. 6.
    Ciardo, G., Lüttgen, G., Miner, A.S.: Exploiting interleaving semantics in symbolic state-space generation. Form. Methods Syst. Des. 31, 63–100 (2007)CrossRefGoogle Scholar
  7. 7.
    Ciardo, G., Lüttgen, G., Siminiceanu, R.: Saturation: an efficient iteration strategy for symbolic state—space generation. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 328–342. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45319-9_23CrossRefzbMATHGoogle Scholar
  8. 8.
    Ciardo, G., Marmorstein, R., Siminiceanu, R.: Saturation unbound. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 379–393. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-36577-X_27CrossRefGoogle Scholar
  9. 9.
    Ciardo, G., Miner, A.S.: SMART: simulation and Markovian analyzer for reliability and timing. In: Proceedings of IEEE International Computer Performance and Dependability Symposium (IPDS 1996), p. 60. IEEE Computer Society Press (1996)Google Scholar
  10. 10.
    Ciardo, G., Yu, A.J.: Saturation-based symbolic reachability analysis using conjunctive and disjunctive partitioning. In: Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 146–161. Springer, Heidelberg (2005).  https://doi.org/10.1007/11560548_13CrossRefGoogle Scholar
  11. 11.
    Couvreur, J.-M., Encrenaz, E., Paviot-Adet, E., Poitrenaud, D., Wacrenier, P.-A.: Data decision diagrams for Petri net analysis. In: Esparza, J., Lakos, C. (eds.) ICATPN 2002. LNCS, vol. 2360, pp. 101–120. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-48068-4_8CrossRefzbMATHGoogle Scholar
  12. 12.
    Couvreur, J.-M., Thierry-Mieg, Y.: Hierarchical decision diagrams to exploit model structure. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 443–457. Springer, Heidelberg (2005).  https://doi.org/10.1007/11562436_32CrossRefGoogle Scholar
  13. 13.
    Kam, T., Villa, T., Brayton, R.K., Sangiovanni-Vincentelli, A.: Multi-valued decision diagrams: theory and applications. Mult.-Valued Log. 4(1–2), 9–62 (1998)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Miner, A.S.: Implicit GSPN reachability set generation using decision diagrams. Perform. Eval. 56(1), 145–165 (2004). Dependable Systems and Networks - Performance and Dependability Symposium (DSN-PDS) 2002: Selected PapersCrossRefGoogle Scholar
  15. 15.
    Miner, A.S.: Saturation for a general class of models. In: Proceedings of QEST, pp. 282–291, September 2004Google Scholar
  16. 16.
    Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541–579 (1989)CrossRefGoogle Scholar
  17. 17.
    Strehl, K., Thiele, L.: Interval diagram techniques for symbolic model checking of Petri nets. In: Proceedings of Design, Automation and Test in Europe (DATE 1999), pp. 756–757, March 1999Google Scholar
  18. 18.
    Thierry-Mieg, Y.: Symbolic model-checking using ITS-tools. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 231–237. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46681-0_20CrossRefGoogle Scholar
  19. 19.
    Wan, M., Ciardo, G.: Symbolic state-space generation of asynchronous systems using extensible decision diagrams. In: Nielsen, M., Kučera, A., Miltersen, P.B., Palamidessi, C., Tůma, P., Valencia, F. (eds.) SOFSEM 2009. LNCS, vol. 5404, pp. 582–594. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-540-95891-8_52CrossRefzbMATHGoogle Scholar
  20. 20.
    Yoneda, T., Hatori, H., Takahara, A., Minato, S.: BDDs vs. Zero-suppressed BDDs: for CTL symbolic model checking of Petri nets. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 435–449. Springer, Heidelberg (1996).  https://doi.org/10.1007/BFb0031826CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceIowa State UniversityAmesUSA

Personalised recommendations