Advertisement

Function-Dependent Commitments from Homomorphic Authenticators

  • Lucas SchabhüserEmail author
  • Denis Butin
  • Johannes Buchmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11547)

Abstract

In cloud computing, delegated computing raises the security issue of guaranteeing data authenticity during a remote computation. In this context, the recently introduced function-dependent commitments (FDCs) are the only approach providing both fast correctness verification, information-theoretic input-output privacy, and strong unforgeability. Homomorphic authenticators—the established approach to this problem—do not provide information-theoretic privacy and always reveal the computation’s result upon verification, thus violating output privacy. Since many homomorphic authenticator schemes already exist, we investigate the relation between them and FDCs to clarify how existing schemes can be supplemented with information-theoretic output privacy. Specifically, we present a generic transformation turning any structure-preserving homomorphic authenticator scheme into an FDC scheme. This facilitates the design of multi-party computation schemes with full information-theoretic privacy. We also introduce a new structure-preserving, linearly homomorphic authenticator scheme suitable for our transformation. It is the first both context hiding and structure-preserving homomorphic authenticator scheme. Our scheme is also the first structure-preserving homomorphic authenticator scheme to achieve efficient verification.

Notes

Acknowledgments

This work has received funding from the DFG as part of project S6 within the CRC 1119 CROSSING.

References

  1. 1.
    Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Constant-size structure-preserving signatures: generic constructions and simple assumptions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 4–24. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34961-4_3CrossRefGoogle Scholar
  2. 2.
    Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving signatures and commitments to group elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14623-7_12CrossRefGoogle Scholar
  3. 3.
    Abe, M., Haralambiev, K., Ohkubo, M.: Signing on elements in bilinear groups for modular protocol design. IACR ePrint 2010, 133 (2010)Google Scholar
  4. 4.
    Agrawal, S., Boneh, D.: Homomorphic MACs: MAC-based integrity for network coding. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 292–305. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-01957-9_18CrossRefGoogle Scholar
  5. 5.
    Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on outsourced data. In: ACM CCS, pp. 863–874. ACM (2013)Google Scholar
  6. 6.
    Baum, C., Damgård, I., Orlandi, C.: Publicly auditable secure multi-party computation. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 175–196. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10879-7_11CrossRefGoogle Scholar
  7. 7.
    Catalano, D., Fiore, D., Nizzardo, L.: Programmable hash functions go private: constructions and applications to (homomorphic) signatures with shorter public keys. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 254–274. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_13CrossRefGoogle Scholar
  8. 8.
    Catalano, D., Fiore, D., Warinschi, B.: Homomorphic signatures with efficient verification for polynomial functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 371–389. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44371-2_21CrossRefGoogle Scholar
  9. 9.
    Catalano, D., Marcedone, A., Puglisi, O.: Authenticating computation on groups: new homomorphic primitives and applications. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 193–212. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45608-8_11CrossRefGoogle Scholar
  10. 10.
    Culnane, C., Schneider, S.A.: A peered bulletin board for robust use in verifiable voting systems. In: CSF, pp. 169–183. IEEE Computer Society (2014)Google Scholar
  11. 11.
    Fiore, D., Mitrokotsa, A., Nizzardo, L., Pagnin, E.: Multi-key homomorphic authenticators. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 499–530. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53890-6_17CrossRefGoogle Scholar
  12. 12.
    Ghadafi, E.: How low can you go? short structure-preserving signatures for Diffie-Hellman vectors. In: O’Neill, M. (ed.) IMACC 2017. LNCS, vol. 10655, pp. 185–204. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-71045-7_10CrossRefGoogle Scholar
  13. 13.
    Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006).  https://doi.org/10.1007/11935230_29CrossRefGoogle Scholar
  14. 14.
    Jutla, C.S., Roy, A.: Improved structure preserving signatures under standard bilinear assumptions. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 183–209. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54388-7_7CrossRefGoogle Scholar
  15. 15.
    Kiltz, E., Pan, J., Wee, H.: Structure-preserving signatures from standard assumptions, revisited. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 275–295. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_14CrossRefGoogle Scholar
  16. 16.
    Libert, B., Peters, T., Joye, M., Yung, M.: Linearly homomorphic structure-preserving signatures and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 289–307. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_17CrossRefGoogle Scholar
  17. 17.
    Libert, B., Ramanna, S.C., Yung, M.: Functional commitment schemes: from polynomial commitments to pairing-based accumulators from simple assumptions. In: ICALP. LIPIcs, vol. 55, pp. 30:1–30:14, Dagstuhl (2016)Google Scholar
  18. 18.
    Moran, T., Naor, M.: Receipt-free universally-verifiable voting with everlasting privacy. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 373–392. Springer, Heidelberg (2006).  https://doi.org/10.1007/11818175_22CrossRefGoogle Scholar
  19. 19.
    Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992).  https://doi.org/10.1007/3-540-46766-1_9CrossRefGoogle Scholar
  20. 20.
    Schabhüser, L., Butin, D., Buchmann, J.: CHQS: publicly verifiable homomorphic signatures beyond the linear case. In: Su, C., Kikuchi, H. (eds.) ISPEC 2018. LNCS, vol. 11125, pp. 213–228. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-99807-7_13CrossRefGoogle Scholar
  21. 21.
    Schabhüser, L., Butin, D., Buchmann, J.: Function-dependent commitments from homomorphic authenticators. IACR ePrint 2019, 250 (2019)Google Scholar
  22. 22.
    Schabhüser, L., Butin, D., Demirel, D., Buchmann, J.: Function-dependent commitments for verifiable multi-party computation. In: Chen, L., Manulis, M., Schneider, S. (eds.) ISC 2018. LNCS, vol. 11060, pp. 289–307. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-99136-8_16CrossRefGoogle Scholar
  23. 23.
    Schabhüser, L., Demirel, D., Buchmann, J.: An unconditionally hiding auditing procedure for computations over distributed data. In: CNS, pp. 552–560. IEEE (2016)Google Scholar
  24. 24.
    Zhang, L.F., Safavi-Naini, R.: Generalized homomorphic MACs with efficient verification. In: AsiaPKC@AsiaCCS, pp. 3–12. ACM (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lucas Schabhüser
    • 1
    Email author
  • Denis Butin
    • 1
  • Johannes Buchmann
    • 1
  1. 1.Technische Universität DarmstadtDarmstadtGermany

Personalised recommendations