Skip to main content

Permutation Codes, Hamming Graphs and Turán Graphs

  • Conference paper
  • First Online:
Applied Physics, System Science and Computers III (APSAC 2018)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 574 ))

Abstract

This paper investigates the properties of permutation Hamming graphs, a class of graphs in which the vertices are the permutations of n symbols and the edges connect pairs of vertices at a Hamming distance greater than or equal to a value d. Despite a remarkable regularity, permutation Hamming graphs elude general formulas for relevant indicators like the clique number. The clique number plays a crucial role in the Maximum Permutation Code Problem (MPCP), a well-known optimization problem. This work focuses on the relationship between permutation Hamming graphs and a particular type of Turán graphs. The main result is a theorem asserting that permutation Hamming graphs are the intersection of a set of Turán graphs. This equivalence has implications on the MPCP. In fact it enables a reformulation as a hitting set problem, which in turn can be translated into a binary integer program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barta, J., Montemanni, R., Smith, D.H.: A branch and bound approach to permutation codes. In: Proceedings of the IEEE 2nd International Conference of Information and Communication Technology - ICOICT, pp. 187–192 (2014)

    Google Scholar 

  2. Barta, J., Montemanni, R.: Hamming graphs and permutation codes. In: Proceedings of the IEEE 4th International Conference on Mathematics and Computers in Sciences and Industry - MCSI, pp. 154–158 (2017)

    Google Scholar 

  3. Bereg, S., Levy, A., Sudborough, I.H.: Constructing permutation arrays from groups. Des. Codes Cryptogr. 86(5), 1095–1111 (2018)

    Article  MathSciNet  Google Scholar 

  4. Bogaerts, M.: New upper bounds for the size of permutation codes via linear programming. Elecron. J. Comb. 17(1), #R135 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Carraghan, R., Pardalos, P.M.: An exact algorithm for the maximum clique problem. Oper. Res. Lett. 9, 375–382 (1990)

    Article  Google Scholar 

  6. Chu, W., Colbourn, C.J., Dukes, P.: Constructions for permutation codes in powerline communications. Des. Codes Cryptogr. 32, 51–64 (2004)

    Article  MathSciNet  Google Scholar 

  7. Colbourn, C.J., Kløve, T., Ling, A.C.H.: Permutation arrays for powerline communication and mutually orthogonal Latin squares. IEEE Trans. Inf. Theory 50, 1289–1291 (2004)

    Article  MathSciNet  Google Scholar 

  8. de la Torre, D.R., Colbourn, C.J., Ling, A.C.H.: An application of permutation arrays to block ciphers. In: Proceedings of the 31st Southeastern International Conference on Combinatorics, Graph Theory and Computing, vol. 145, pp. 5–7 (2000)

    Google Scholar 

  9. Deza, M., Vanstone, S.A.: Bounds for permutation arrays. J. Stat. Plan. Infer. 2, 197–209 (1978)

    Article  MathSciNet  Google Scholar 

  10. El Rouayheb, S., Georghiades, C.N.: Graph theoretic methods in coding theory. In: Classical, Semi-Classical and Quantum Noise. Springer (2012)

    Google Scholar 

  11. Frankl, P., Deza, M.: On maximal numbers of permutations with given maximal or minimal distance. J. Comb. Theory Ser. A 22, 352–360 (1977)

    Article  Google Scholar 

  12. Han Vinck, A.J.: Coded modulation for power line communications. A.E.Ü. Int. J. Electron. Commun. 54(1), 45–49 (2000)

    Google Scholar 

  13. Jiang, A., Mateescu, R., Schwartz, M., Bruck, J.: Rank modulation for flash memories. In: Proceedings of the IEEE International Symposium on Information Theory, pp. 1731–1735 (2008)

    Google Scholar 

  14. Montemanni, R., Barta, J., Smith, D.H.: The design of permutation codes via a specialized maximum clique algorithm. In: Proceedings of the IEEE 2nd International Conference on Mathematics and Computers in Science and Industry - MCSI (2015)

    Google Scholar 

  15. Pavlidou, N., Han Vinck, A.J., Yazdani, J., Honary, B.: Power line communications: state of the art and future trends. IEEE Commun. Mag. 41(4), 34–40 (2003)

    Article  Google Scholar 

  16. Smith, D.H., Montemanni, R.: A new table of permutation codes. Des. Codes Cryptogr. 63(2), 241–253 (2012)

    Article  MathSciNet  Google Scholar 

  17. Tarnanen, H.: Upper bounds on permutation codes via linear programming. Eur. J. Comb. 20, 101–114 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to János Barta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barta, J., Montemanni, R. (2019). Permutation Codes, Hamming Graphs and Turán Graphs. In: Ntalianis, K., Vachtsevanos, G., Borne, P., Croitoru, A. (eds) Applied Physics, System Science and Computers III. APSAC 2018. Lecture Notes in Electrical Engineering, vol 574 . Springer, Cham. https://doi.org/10.1007/978-3-030-21507-1_17

Download citation

Publish with us

Policies and ethics