Skip to main content

Reversibility vs Local Creation/Destruction

  • Conference paper
  • First Online:
Reversible Computation (RC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11497))

Included in the following conference series:

  • 457 Accesses

Abstract

Consider a network that evolves reversibly, according to nearest neighbours interactions. Can its dynamics create/destroy nodes? On the one hand, since the nodes are the principal carriers of information, it seems that they cannot be destroyed without jeopardising bijectivity. On the other hand, there are plenty of global functions from graphs to graphs that are non-vertex-preserving and bijective. The question has been answered negatively—in three different ways. Yet, in this paper we do obtain reversible local node creation/destruction—in three relaxed settings, whose equivalence we prove for robustness. We motivate our work both by theoretical computer science considerations (reversible computing, cellular automata extensions) and theoretical physics concerns (basic formalisms towards discrete quantum gravity).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arrighi, P., Dowek, G.: Causal graph dynamics. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012. LNCS, vol. 7392, pp. 54–66. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31585-5_9

    Chapter  MATH  Google Scholar 

  2. Arrighi, P., Nesme, V., Werner, R.: Unitarity plus causality implies localizability. J. Comput. Syst. Sci. 77, 372–378 (2010). QIP 2010 (long talk)

    Article  MathSciNet  Google Scholar 

  3. Arrighi, P., Dowek, G.: Causal graph dynamics (long version). Inf. Comput. 223, 78–93 (2013)

    Article  Google Scholar 

  4. Arrighi, P., Durbec, N., Emmanuel, A.: Reversibility vs local creation/destruction. CoRR, abs/1805.10330 (2018). http://arxiv.org/abs/1805.10330

  5. Arrighi, P., Martiel, S.: Quantum causal graph dynamics. Phys. Rev. D 96, 024026 (2017). https://doi.org/10.1103/PhysRevD.96.024026

    Article  MathSciNet  Google Scholar 

  6. Arrighi, P., Martiel, S., Nesme, V.: Cellular automata over generalized cayley graphs. Math. Struct. Comput. Sci. 28(3), 340–383 (2018). https://doi.org/10.1017/S0960129517000044

    Article  MathSciNet  Google Scholar 

  7. Arrighi, P., Martiel, S., Perdrix, S.: Block representation of reversible causal graph dynamics. In: Kosowski, A., Walukiewicz, I. (eds.) FCT 2015. LNCS, vol. 9210, pp. 351–363. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22177-9_27

    Chapter  MATH  Google Scholar 

  8. Arrighi, P., Martiel, S., Perdrix, S.: Reversible causal graph dynamics. In: Devitt, S., Lanese, I. (eds.) RC 2016. LNCS, vol. 9720, pp. 73–88. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40578-0_5

    Chapter  MATH  Google Scholar 

  9. Bartholdi, L.: Gardens of Eden and amenability on cellular automata. J. Eur. Math. Soc. 12(1), 241–248 (2010)

    Article  MathSciNet  Google Scholar 

  10. Boehm, P., Fonio, H.R., Habel, A.: Amalgamation of graph transformations: a synchronization mechanism. J. Comput. Syst. Sci. 34(2–3), 377–408 (1987)

    Article  MathSciNet  Google Scholar 

  11. Chalopin, J., Das, S., Widmayer, P.: Deterministic symmetric rendezvous in arbitrary graphs: overcoming anonymity, failures and uncertainty. In: Alpern, S., Fokkink, R., Gąsieniec, L., Lindelauf, R., Subrahmanian, V. (eds.) Search Theory, pp. 175–195. Springer, Berlin (2013). https://doi.org/10.1007/978-1-4614-6825-7_12

    Chapter  Google Scholar 

  12. Danos, V., Laneve, C.: Formal molecular biology. Theor. Comput. Sci. 325(1), 69–110 (2004). https://doi.org/10.1016/j.tcs.2004.03.065. http://www.sciencedirect.com/science/article/pii/S0304397504002336. Computational Systems Biology

    Article  MathSciNet  MATH  Google Scholar 

  13. Durand-Lose, J.O.: Representing reversible cellular automata with reversible block cellular automata. Discrete Math. Theor. Comput. Sci. 145, 154 (2001)

    MATH  Google Scholar 

  14. Ehrig, H., Lowe, M.: Parallel and distributed derivations in the single-pushout approach. Theor. Comput. Sci. 109(1–2), 123–143 (1993)

    Article  MathSciNet  Google Scholar 

  15. Ceccherini-Silberstein, T., Fiorenzi, F., Scarabotti, F.: The garden of Eden theorem for cellular automata and for symbolic dynamical systems. In: Random Walks and Geometry. Proceedings of a Workshop at the Erwin Schrödinger Institute, Vienna, 18 June–13 July 2001. Collaboration with Klaus Schmidt and Wolfgang Woess. Collected papers, pp. 73–108. de Gruyter, Berlin (2004)

    Google Scholar 

  16. Ganzinger, H. (ed.): RTA 1996. LNCS, vol. 1103. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61464-8

    Book  MATH  Google Scholar 

  17. Gromov, M.: Endomorphisms of symbolic algebraic varieties. J. Eur. Math. Soc. 1(2), 109–197 (1999). https://doi.org/10.1007/pl00011162

    Article  MathSciNet  MATH  Google Scholar 

  18. Hamma, A., et al.: A quantum Bose-Hubbard model with evolving graph as toy model for emergent spacetime. Arxiv preprint arXiv:0911.5075 (2009)

  19. Hasslacher, B., Meyer, D.A.: Modelling dynamical geometry with lattice gas automata. Expanded Version of a Talk Presented at the Seventh International Conference on the Discrete Simulation of Fluids Held at the University of Oxford, June 1998

    Google Scholar 

  20. Hedlund, G.A.: Endomorphisms and automorphisms of the shift dynamical system. Math. Syst. Theory 3, 320–375 (1969)

    Article  MathSciNet  Google Scholar 

  21. Kari, J.: Reversibility of 2D cellular automata is undecidable. In: Cellular Automata: Theory and Experiment, vol. 45, pp. 379–385. MIT Press (1991)

    Google Scholar 

  22. Kari, J.: Representation of reversible cellular automata with block permutations. Theory Comput. Syst. 29(1), 47–61 (1996)

    MathSciNet  MATH  Google Scholar 

  23. Kari, J.: On the circuit depth of structurally reversible cellular automata. Fundam. Inf. 38(1–2), 93–107 (1999)

    MathSciNet  MATH  Google Scholar 

  24. Klales, A., Cianci, D., Needell, Z., Meyer, D.A., Love, P.J.: Lattice gas simulations of dynamical geometry in two dimensions. Phys. Rev. E 82(4), 046705 (2010). https://doi.org/10.1103/PhysRevE.82.046705

    Article  MathSciNet  Google Scholar 

  25. Konopka, T., Markopoulou, F., Smolin, L.: Quantum graphity. Arxiv preprint hep-th/0611197 (2006)

    Google Scholar 

  26. Maignan, L., Spicher, A.: Global graph transformations. In: Proceedings of the 6th International Workshop on Graph Computation Models, L’Aquila, Italy, 20 July 2015, pp. 34–49 (2015)

    Google Scholar 

  27. Martiel, S., Martin, B.: Intrinsic universality of causal graph dynamics. In: Neary, T., Cook, M. (eds.) Electronic Proceedings in Theoretical Computer Science, Proceedings, Machines, Computations and Universality 2013, Zürich, Switzerland, 9 September 2013–11 September 2013, vol. 128, pp. 137–149. Open Publishing Association (2013). https://doi.org/10.4204/EPTCS.128.19

  28. Papazian, C., Rémila, E.: Hyperbolic recognition by graph automata. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 330–342. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45465-9_29

    Chapter  MATH  Google Scholar 

  29. Schumacher, B., Werner, R.: Reversible quantum cellular automata. arXiv pre-print quant-ph/0405174 (2004)

    Google Scholar 

  30. Sorkin, R.: Time-evolution problem in Regge calculus. Phys. Rev. D. 12(2), 385–396 (1975)

    Article  MathSciNet  Google Scholar 

  31. Taentzer, G.: Parallel high-level replacement systems. Theor. Comput. Sci. 186(1–2), 43–81 (1997)

    Article  MathSciNet  Google Scholar 

  32. Tomita, K., Kurokawa, H., Murata, S.: Graph automata: natural expression of self-reproduction. Phys. D: Nonlinear Phenom. 171(4), 197–210 (2002). https://doi.org/10.1016/S0167-2789(02)00601-2. http://www.sciencedirect.com/science/article/pii/S0167278902006012

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Durbec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arrighi, P., Durbec, N., Emmanuel, A. (2019). Reversibility vs Local Creation/Destruction. In: Thomsen, M., Soeken, M. (eds) Reversible Computation. RC 2019. Lecture Notes in Computer Science(), vol 11497. Springer, Cham. https://doi.org/10.1007/978-3-030-21500-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21500-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21499-9

  • Online ISBN: 978-3-030-21500-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics