Advertisement

From MEMS to NEMS

  • Teodor Gotszalk
Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 573)

Abstract

Nanotechnology, as the scientific and technological discipline dealing with the design, fabrication and application of systems whose dimensions or tolerances are in the domain of nanometers, is becoming increasingly important in many industrial and scientific areas. Nanotechnologies and nanoscience are triggered by diverse fields and applications but on the other hand, they trigger by themselves future industrial and practical solutions. One of the most important challenges observed nowadays in nanotechnology is driving the manufacturing processes to sub-nm accuracy level for critical features and positioning tasks.

Notes

Acknowledgements

This work was supported by the Wrocław University of Science and Technology (WUST) statutory grant. The author would like to thank all the coworkers of the Nanometrology Division of the Faculty of Microsystems Electronics and Photonics at the WUST for their support and collaboration.

References

  1. 1.
    Bannon F, Clark J, Nguyen C (2000) High-Q HF microelectromechanical filters. IEEE J Solid-State Circuits 35(4):512–526CrossRefGoogle Scholar
  2. 2.
    Barton RA, Ilic B, Van Der Zande AM, Whitney WS, McEuen PL, Parpia JM, Craighead HG (2011) High, size-dependent quality factor in an array of graphene mechanical resonators. Nano Lett 11(3):1232–1236CrossRefGoogle Scholar
  3. 3.
    Belic D, Shawrav M, Gavagnin M, Stöger-Pollach M, Wanzenboeck D, Bertagnolli E (2015) Direct-write deposition and focused-electron-beam-induced purification of gold nanostructures. ACS Appl Mater Interfaces 7(4):2467–2479CrossRefGoogle Scholar
  4. 4.
    Chen C, Hone J (2013) Graphene nanoelectromechanical systems. Proc IEEE 101(7):1766–1779CrossRefGoogle Scholar
  5. 5.
    Chen C, Rosenblatt S, Bolotin KI, Kalb W, Kim P, Kymissis I, Hone J (2009) Performance of monolayer graphene nanomechanical resonators with electrical readout. Nat Nanotechnol 4(12):861–867CrossRefGoogle Scholar
  6. 6.
    Cleland A, Roukes M (1996) Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals. Appl Phys Lett 69:2653CrossRefGoogle Scholar
  7. 7.
    Cleland A, Roukes M (1999) External control of dissipation in a nanometer-scale radiofrequency mechanical resonator. Sens Actuators A 72(3):256–261CrossRefGoogle Scholar
  8. 8.
    Goniszewski S, Gallop J, Adabi M, Gajewski K, Shaforost O, Klein N, Hao L (2015) Self-supporting graphene films and their applications. IET Circuits Devices Syst Spec 9:420–427CrossRefGoogle Scholar
  9. 9.
    Gotszalk T, Grabiec P, Rangelow I (2003) Calibration and examination of piezoresistive Wheatstone bridge cantilevers for scanning probe microscopy. Ultramicroscopy 97(1–4):385–389CrossRefGoogle Scholar
  10. 10.
    Grabiec P, Gotszalk T, Radojewski J, Edinger K, Abedinov N, Rangelow IW (2002) SNOM/AFM microprobe integrated with piezoresistive cantilever beam for multifunctional surface analysis. Microelectron Eng 61–62:981–986CrossRefGoogle Scholar
  11. 11.
    Hoeflich K, Jurczyk J, Zhang Y, Puydinger M, Goetz M, Guerra-Nunez C, Best J, Kapusta Cz, Utke I (2017) Direct electron beam writing of silver-based nanostructures. ACS Appl Mater Interfaces 9:24071–24077CrossRefGoogle Scholar
  12. 12.
    Huang S, Stott A, Green R, Beck M (1988) Electronic transducer for measurement of low value capacitances. J Phys E: Sci Instrum 21:242CrossRefGoogle Scholar
  13. 13.
    Huang X, Zorman C, Mehregany M, Roukes M (2003) Nanoelectromechanical systems: nanodevice motion at microwave frequencies. Nature 421:6922Google Scholar
  14. 14.
    Huth M (2010) Granular metals: from electronic correlations to strain-sensing applications. J Appl Phys 107:113709CrossRefGoogle Scholar
  15. 15.
    Ko WH (2007) Trends and frontiers of MEMS. Sens Actuators A 136(1):62–67CrossRefGoogle Scholar
  16. 16.
    Koops H, Fukuda H (2016) Giant current density via indirect exciton orbit overlapping in polarized nano-granular materials. J Vac Sci Technol 33(2):02B108CrossRefGoogle Scholar
  17. 17.
    Lewis B, Mound B, Srijanto B, Fowlkes J, Pharr G, Rack P (2017) Growth and nanomechanical characterization of nanoscale 3D architectures grown via focused electron beam induced deposition. Nanoscale 9:16349–16356CrossRefGoogle Scholar
  18. 18.
    Li M, Tang HX, Roukes ML (2007) Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nat Nanotechnol 2(2):114–120CrossRefGoogle Scholar
  19. 19.
    Llobet J, Gerboles M, Sansa M, Bausells J, Borrise X, Perez-Murano F (2015) Fabrication of functional electromechanical nanowire resonators by focused ion beam implantation. J Micro-Nanolithography MEMS and MOEMS 14(3)CrossRefGoogle Scholar
  20. 20.
    Llobet J, Sansa M, Gerbolés M, Mestres N, Arbiol J, Borrisé X, Pérez-Murano F (2014) Enabling electromechanical transduction in silicon nanowire mechanical resonators fabricated by focused ion beam implantation. Nanotechnology 25:135302CrossRefGoogle Scholar
  21. 21.
    López-Polín G, Gómez-Navarro C, Parente V, Katsnelson MI, Pérez-Murano F, Gómez-Herrero J (2015) Increasing the elastic modulus of graphene by controlled defect creation. Nat Phys 11:26CrossRefGoogle Scholar
  22. 22.
    Moczala M, Babij M, Kwoka K, Piasecki T, Sierakowski A, Gotszalk T (2019) Resolution improvement in electromagnetically actuated Wheatstone bridge configuration micromechanical resonators. Sens Actuators A 284:181–185CrossRefGoogle Scholar
  23. 23.
    Moczała M, Kopiec D, Sierakowski A, Dobrowolski R, Grabiec P, Gotszalk T (2014) Investigations of mechanical properties of microfabricated resonators using atomic force microscopy related techniques. Microelectron Eng 119:164–168CrossRefGoogle Scholar
  24. 24.
    Moczała M, Kwoka K, Piasecki T, Kunicki P, Sierakowski A, Gotszalk T (2017) Fabrication and characterization of micromechanical bridges with strain sensors deposited using focused electron beam induced technology. Microelectron Eng 176:111–115CrossRefGoogle Scholar
  25. 25.
    Moczała M, Sierakowski A, Dobrowolski R, Grabiec P, Gotszalk T (2013) Fabrication and measurement of micromechanical bridge structures for mass change detection. Proceedings SPIE, vol 8902, p 89021.sGoogle Scholar
  26. 26.
    Nieradka K, Kopiec D, Małozięć G, Kowalska Z, Grabiec P, Janus P, Gotszalk T (2012) Fabrication and characterization of electromagnetically actuated microcantilevers for biochemical sensing, parallel AFM and nanomanipulation. Microelectron Eng 98:676–679CrossRefGoogle Scholar
  27. 27.
    Orłowska K, Słupski P, Świątkowski M, Kunicki P, Sankowska A, Gotszalk T (2015) Light intensity fibre optic sensor for MEMS displacement and vibration metrology. Opt Laser Technol 65:159–163CrossRefGoogle Scholar
  28. 28.
    Orłowska K, Światkowski M, Kunicki P, Kopiec D, Gotszalk T (2016) High-resolution and wide-bandwidth light intensity fiber optic displacement sensor for MEMS metrology. Appl Opt 55(22):5960–5966CrossRefGoogle Scholar
  29. 29.
    Polski Komitet Normalizacyjny (2010) Międzynarodowy słownik metrologii. Pojęcia podstawowe i ogólne oraz terminy z nimi związane (VIM). PKN-ISO/IEC Guide 99Google Scholar
  30. 30.
    Puydinger M, Velo M, Domingos R, Zhang Y, Maeder X, Guerra-nun C, Be F (2016) Annealing-based electrical tuning of cobalt–carbon deposits grown by focused-electron-beam-induced deposition. ACS Appl Mater Interfaces 8:32496–32503CrossRefGoogle Scholar
  31. 31.
    Rangelow IW, Grabiec P, Gotszalk T, Edinger K (2002) Piezoresistive SXM sensors. Surf Interface Anal 33:59–64CrossRefGoogle Scholar
  32. 32.
    Schwalb Ch, Grimm Ch, Baranowski M, Sachser R, Porrati F, Reith H, Das P, Müller J, Völklein F, Kaya A, Huth M (2010) A tunable strain sensor using nanogranular metals. Sensors 10:9847–9856CrossRefGoogle Scholar
  33. 33.
    Sekaric L, Parpia JM, Craighead H, Feygelson T, Houston B, Butler J (2002) Nanomechanical resonant structures in nanocrystalline diamond. Appl Phys Lett 81:4455–4457CrossRefGoogle Scholar
  34. 34.
    Smith D, Pratt J, Howard L (2009) A fiber-optic sinterferometer with subpicometer resolution for dc and low-frequency displacement measurement. Rev Sci Instrum 80(3):035105CrossRefGoogle Scholar
  35. 35.
    Swiatkowski M, Wojtuś A, Wielgoszewski G, Rudek M, Piasecki T, Jozwiak G, Gotszalk T (2019) A low-noise measurement system for scanning thermal microscopy resistive nanoprobes based on a transformer ratio-arm bridge. Meas Sci Technol 29:045901CrossRefGoogle Scholar
  36. 36.
    Tamayo J (2005) Study of the noise of micromechanical oscillators under quality factor enhancement via driving force control. J Appl Phys 97(4):1–10CrossRefGoogle Scholar
  37. 37.
    Tortonese M, Barrett R, Quate C (1993) Atomic resolution with an atomic force microscope using piezoresistive detection. Appl Phys Lett 62(8):834–836CrossRefGoogle Scholar
  38. 38.
    Zaborowski M, Dumania P, Tomaszewski D, Czupryniak J, Ossowski T (2012) Development of Si nanowire chemical sensors. Proc Eng 47(1000):1053–1056.  https://doi.org/10.1016/j.proeng.2012.09.331CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Teodor Gotszalk
    • 1
  1. 1.Dipto. ElettronicaWrocław University of Science and TechnologyWrocławPoland

Personalised recommendations