Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 356 Accesses

Abstract

In order to apply a novel optical imaging technique, a contrast mechanism must be combined with a device architecture. In this Chapter, emerging endoscopic device architectures are described, and their impact on clinical translation is considered. This is followed by a description of the device architecture we chose to develop, the work done to address its limitations, including an assessment of comb artefact removal and demosaicking algorithms, and the advantages this device architecture affords us.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gaab MR (2013) Instrumentation: endoscopes and equipment. World Neurosurg 79:S14.e11–S14.e21

    Google Scholar 

  2. Trindade AJ, Smith MS, Pleskow DK (2016) The new kid on the block for advanced imaging in Barrett’s esophagus: a review of volumetric laser endomicroscopy. Therap Adv Gastroenterol 9:408–416

    Article  Google Scholar 

  3. NvisionVLE® Imaging System—NinePoint Medical. Available at: http://www.ninepointmedical.com/nvisionvle-imaging-system/. Accessed 1 Aug 2017

  4. Rodriguez SA et al (2010) Ultrathin endoscopes. Gastrointest Endosc 71:893–898

    Article  ADS  Google Scholar 

  5. Saeian K et al (2002) Unsedated transnasal endoscopy accurately detects Barrett’s metaplasia and dysplasia. Gastrointest Endosc 56:472–478

    Article  Google Scholar 

  6. Sugimoto H et al (2015) Surveillance of short-segment Barrett’s esophagus using ultrathin transnasal endoscopy. J Gastroenterol Hepatol (Australia) 30:41–45

    Article  Google Scholar 

  7. Tanuma T, Morita Y, Doyama H (2016) Current status of transnasal endoscopy using ultrathin videoscope for upper GI tract in the world. Dig Endosc 28

    Google Scholar 

  8. Sami SS et al (2015) A randomized comparative effectiveness trial of novel endoscopic techniques and approaches for Barrett’s esophagus screening in the community. Am J Gastroenterol 110:148–158

    Article  ADS  Google Scholar 

  9. Moriarty JP et al (2017) Costs associated with Barrett’s esophagus screening in the community: an economic analysis of a prospective randomized controlled trial of sedated versus hospital unsedated versus mobile community unsedated endoscopy. Gastrointest Endosc

    Google Scholar 

  10. Iddan G, Meron G, Glukhovsky A, Swain P (2000) Wireless capsule endoscopy. Nature 405:417

    Article  ADS  Google Scholar 

  11. Fisher LR, Hasler WL (2012) New vision in video capsule endoscopy: current status and future directions. Nat Rev Gastroenterol Hepatol 9:392–405

    Article  Google Scholar 

  12. Wang A et al (2013) Wireless capsule endoscopy. Gastrointest Endosc 78:805–815

    Article  Google Scholar 

  13. Fernandez-Urien I, Carretero C, Armendariz R, Muñoz-Navas M (2008) Esophageal capsule endoscopy. World J Gastroenterol 14:5254

    Article  Google Scholar 

  14. Ciuti G, Menciassi A, Dario P (2011) Capsule endoscopy: from current achievements to open challenges. IEEE Rev Biomed Eng 4:59–72

    Article  Google Scholar 

  15. Gora MJ et al (2013) Imaging the upper gastrointestinal tract in unsedated patients using tethered capsule endomicroscopy. Gastroenterology 145:723–725

    Article  Google Scholar 

  16. Liao Z, Gao R, Xu C, Xu D-F, Li Z-S (2009) Sleeve string capsule endoscopy for real-time viewing of the esophagus: a pilot study (with video). Gastrointest Endosc 70:201–209

    Article  ADS  Google Scholar 

  17. Gora MJ et al (2013) Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure. Nat Med 19:238–240

    Article  Google Scholar 

  18. Gupta N et al (2012) Longer inspection time is associated with increased detection of high-grade dysplasia and esophageal adenocarcinoma in Barrett’s esophagus. Gastrointest Endosc 76:531–538

    Article  ADS  Google Scholar 

  19. Gkolfakis P, Tziatzios G, Dimitriadis GD, Triantafyllou K (2017) New endoscopes and add-on devices to improve colonoscopy performance. World J Gastroenterol 23:3784–3796

    Article  Google Scholar 

  20. Gralnek IM et al (2014) Standard forward-viewing colonoscopy versus full-spectrum endoscopy: an international, multicentre, randomised, tandem colonoscopy trial. Lancet Oncol 15:353–360

    Article  Google Scholar 

  21. Hassan C et al (2017) Full-spectrum (FUSE) versus standard forward-viewing colonoscopy in an organised colorectal cancer screening programme. Gut 66:1949–1955

    Google Scholar 

  22. Clancy NT et al (2012) Multispectral image alignment using a three channel endoscope in vivo during minimally invasive surgery. Biomed Opt Express 3:2567–2578

    Article  Google Scholar 

  23. Winter C et al (2006) Automatic adaptive enhancement for images obtained with fiberscopic endoscopes. IEEE Trans Biomed Eng 53:2035–2046

    Article  Google Scholar 

  24. Waterhouse DJ, Luthman AS, Bohndiek SE (2017) Spectral band optimization for multispectral fluorescence imaging, vol. 10057, p 1005709

    Google Scholar 

  25. Luthman S, Waterhouse D, Bollepalli L, Joseph J, Bohndiek S (2017) A multispectral endoscope based on spectrally resolved detector arrays, p 104110A

    Google Scholar 

  26. Regeling B et al (2016) Hyperspectral imaging using flexible endoscopy for laryngeal cancer detection. Sensors 16:1288

    Article  Google Scholar 

  27. Elter M, Rupp S, Winter C (2006) Physically motivated reconstruction of fiberscopic images. Proc Int Conf Pattern Recogn 3:599–602

    Google Scholar 

  28. Rupp S, Elter M, Winter C (2007) Improving the accuracy of feature extraction for flexible endoscope calibration by spatial super resolution. In: Annual international conference of the IEEE engineering in medicine and biology—proceedings, pp 6565–6571

    Google Scholar 

  29. Rupp S et al (2009) Evaluation of spatial interpolation strategies for the removal of comb-structure in fiber-optic images. In: Annual international conference of the IEEE engineering in medicine and biology—proceedings, pp 3677–3680

    Google Scholar 

  30. Lee CY, Han JH (2013) Integrated spatio-spectral method for efficiently suppressing honeycomb pattern artifact in imaging fiber bundle microscopy. Opt Commun 306:67–73

    Article  ADS  Google Scholar 

  31. Han J-H, Lee J, Kang JU (2010) Pixelation effect removal from fiber bundle probe based optical coherence tomography imaging. Opt Express 18:7427

    Article  ADS  Google Scholar 

  32. Wang P et al (2018) Fiber pattern removal and image reconstruction method for snapshot mosaic hyperspectral endoscopic images. Biomed Opt Express 9:780

    Article  Google Scholar 

  33. Pelli DG, Bex P (2013) Measuring contrast sensitivity. Vision Res 90:10–14

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale Jonathan Waterhouse .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Waterhouse, D.J. (2019). Flexible Endoscopy: Device Architecture. In: Novel Optical Endoscopes for Early Cancer Diagnosis and Therapy. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-21481-4_3

Download citation

Publish with us

Policies and ethics