Advertisement

Dimensions Affecting Representation Styles in Ontologies

  • Pablo Rubén Fillottrani
  • C. Maria KeetEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1029)

Abstract

There are different ways to formalise roughly the same knowledge, which negatively affects ontology reuse and alignment and other tasks such as formalising competency questions automatically. We aim to shed light on, and make more precise, the intuitive notion of such ‘representation styles’ through characterising their inherent features and the dimensions by which a style may differ. This has led to a total of 28 different traits that are partitioned over 10 dimensions. The operationalisability was assessed through an evaluation of 30 ontologies on those dimensions and applicable values. It showed that it is feasible to use the dimensions and values and resulting in three easily recognisable types of ontologies. Most ontologies had clearly one or the other trait, whereas some were inherently mixed due to inclusion of different and conflicting design decisions.

References

  1. 1.
    Common Logic (CL): A framework for a family of logic-based languages (2007). https://www.iso.org/standard/39175.html
  2. 2.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logics Handbook: Theory and Applications, 2nd edn. Cambridge University Press, Cambridge (2008)Google Scholar
  3. 3.
    Fernandez-Izquierdo, A.: Ontology testing based on requirements formalization in collaborative development environments. In: Aroyo, L., Gandon, F. (eds.) Doctoral Consortium at ISWC (ISWC-DC 2017). CEUR-WS, vol. 1962, vienna, Austria, 22 October 2017 (2017)Google Scholar
  4. 4.
    Fillottrani, P.R., Keet, C.M.: Patterns for heterogeneous TBox mappings to bridge different modelling decisions. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10249, pp. 371–386. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-58068-5_23CrossRefGoogle Scholar
  5. 5.
    Gangemi, A., Presutti, V.: Ontology design patterns. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies. IHIS, pp. 221–243. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-540-92673-3_10CrossRefGoogle Scholar
  6. 6.
    Grüninger, M., Hahmann, T., Hashemi, A., Ong, D., Ozgovde, A.: Modular first-order ontologies via repositories. Appl. Ontol. 7(2), 169–209 (2012)Google Scholar
  7. 7.
    Hoehndorf, R., Oellrich, A., Dumontier, M., Kelso, J., Rebholz-Schuhmann, D., Herre, H.: Relations as patterns: bridging the gap between OBO and OWL. BMC Bioinform. 11(1), 441 (2010)CrossRefGoogle Scholar
  8. 8.
    Keet, C.M., Ławrynowicz, A.: Test-driven development of ontologies. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 642–657. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-34129-3_39CrossRefGoogle Scholar
  9. 9.
    Keet, C.M., et al.: The data mining optimization ontology. Web Semant. Sci. Serv. Agents World Wide Web 32, 43–53 (2015)CrossRefGoogle Scholar
  10. 10.
    Lawrynowicz, A., Potoniec, J., Robaczyk, M., Tudorache, T.: Discovery of emerging design patterns in ontologies using tree mining. Semant. Web J. (2018, in press)Google Scholar
  11. 11.
    Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: Ontology library. WonderWeb Deliverable D18 (ver. 1.0, 31-12-2003) (2003). http://wonderweb.semanticweb.org
  12. 12.
    Mikroyannidi, E., Iannone, L., Stevens, R., Rector, A.: Inspecting regularities in ontology design using clustering. In: Aroyo, L., et al. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 438–453. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25073-6_28CrossRefGoogle Scholar
  13. 13.
    Mikroyannidi, E., Stevens, R., Rector, A.: Identifying ontology design styles with metrics. In: 7th International Workshop on Semantic Web Enabled Software Engineering (SWESE) (2011)Google Scholar
  14. 14.
    Miles, A., Bechhofer, S.: SKOS simple knowledge organization system reference. W3C recommendation, World Wide Web Consortium (W3C), 18 August 2009. http://www.w3.org/TR/skos-reference/
  15. 15.
    Niles, I., Pease, A.: Towards a standard upper ontology. In: Welty, C., Smith, B. (eds.) Proceedings of the 2nd International Conference on Formal Ontology in Information Systems, FOIS 2001, Ogunquit, Maine, 17–19 October 2001 (2001)Google Scholar
  16. 16.
    Noy, N., Rector, A.: Defining nary relations on the semantic web. W3C Working Group Note, 12 April 2006. https://www.w3.org/TR/swbp-n-aryRelations/
  17. 17.
    Pinggera, J., et al.: Styles in business process modeling: an exploration and a model. Softw. Syst. Model. 14(3), 1055–1080 (2015)CrossRefGoogle Scholar
  18. 18.
    Reynolds, D.: The organization ontology, January 2014. https://www.w3.org/TR/vocab-org/
  19. 19.
    Roussey, C., Corcho, O., Vilches-Blázquez, L.: A catalogue of OWL ontology antipatterns. In: Proceedings of K-CAP 2009, pp. 205–206 (2009)Google Scholar
  20. 20.
    Stevens, R., Goble, C.A., Bechhofer, S.: Ontology-based knowledge representation for bioinformatics. Brief. Bioinform. 1(4), 398–414 (2000)CrossRefGoogle Scholar
  21. 21.
    Uschold, M., Healy, M., Williamson, K., Clark, P., Woods, S.: Ontology reuse and application. In: Guarino, N. (ed.) Proceedings of the International Conference on Formal Ontology and Information Systems (FOIS 1998). IOS Press, FAIA (1998)Google Scholar
  22. 22.
    Walk, S., Singer, P., Strohmaier, M., Tudorache, T., Musen, M.A., Noy, N.F.: Discovering beaten paths in collaborative ontology-engineering projects using Markov chains. J. Biomed. Inform. 51, 254–271 (2014)CrossRefGoogle Scholar
  23. 23.
    Wisniewski, D., Potoniec, J., Lawrynowicz, A., Keet, C.M.: Competency questions and SPARQL-OWL queries dataset and analysis. Technical report 1811.09529, November 2018. https://arxiv.org/abs/1811.09529

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de Ciencias e Ingeniería de la ComputaciónUniversidad Nacional del SurBahía BlancaArgentina
  2. 2.Comisión de Investigaciones CientíficasLa PlataArgentina
  3. 3.Department of Computer ScienceUniversity of Cape TownCape TownSouth Africa

Personalised recommendations