Skip to main content

Decontextualizing Contextual Inversion

  • Conference paper
  • First Online:
Mathematics and Computation in Music (MCM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11502))

Included in the following conference series:

  • 1185 Accesses

Abstract

Contextual inversion, introduced as an analytical tool by David Lewin, is a concept of wide reach and value in music theory and analysis, at the root of neo-Riemannian theory as well as serial theory, and useful for a range of analytical applications. A shortcoming of contextual inversion as it is currently understood, however, is, as implied by the name, that the transformation has to be defined anew for each application. This is potentially a virtue, requiring the analyst to invest the transformational system with meaning in order to construct it in the first place. However, there are certainly instances where new transformational systems are continually redefined for essentially the same purposes. This paper explores some of the most common theoretical bases for contextual inversion groups and considers possible definitions of inversion operators that can apply across set class types, effectively de-contextualizing contextual inversions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The proximity of the triads to these lines can be calculated from the magnitude of the subsets on each Fourier component used to define the phase space, with perfect coincidence where the magnitudes are equal on each. Since all the subsets of major/minor triads are reasonably uniform in their \(|F_3|\) and \(|F_5|\), the triads fall quite close to all of these lines in Ph\(_{3,5}\)-space.

References

  1. Amiot, E.: The torii of phases. In: Yust, J., Wild, J., Burgoyne, J.A. (eds.) MCM 2013. LNCS (LNAI), vol. 7937, pp. 1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39357-0_1

    Chapter  MATH  Google Scholar 

  2. Amiot, E.: Discrete Fourier Transform in Music Theory. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-45581-5

    Book  MATH  Google Scholar 

  3. Amiot, E.: Strange symmetries. In: Agustín-Aquino, O.A., Lluis-Puebla, E., Montiel, M. (eds.) MCM 2017. LNCS (LNAI), vol. 10527, pp. 135–150. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71827-9_11

    Chapter  Google Scholar 

  4. Childs, A.: Moving beyond neo-Riemannian triads: exploring a transformational model for seventh chords. J. Music Theory 42(2), 181–93 (1998)

    Article  MathSciNet  Google Scholar 

  5. Cohn, R.: Neo-Riemannian operations, parsimonious triads, and their ‘Tonnetz’ representations. J. Music Theory 41(1), 1–66 (1997)

    Article  Google Scholar 

  6. Cohn, R.: Audacious Euphony: Chromaticism and the Triad’s Second Nature. Oxford University Press, Oxford (2011)

    Google Scholar 

  7. Fiore, T.M., Noll, T.: Voicing transformations and a linear representations of uniform triadic transformations. arXiv:1603.09636 (2016)

  8. Fiore, T.M., Noll, T., Satyendra, R.: Incorporating voice permutations into the theory of neo-Riemannian groups and Lewinian duality. In: Yust, J., Wild, J., Burgoyne, J.A. (eds.) MCM 2013. LNCS (LNAI), vol. 7937, pp. 100–114. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39357-0_8

    Chapter  MATH  Google Scholar 

  9. Fiore, T.M., Noll, T., Satyendra, R.: Morphisms of generalized interval systems and \(PR\)-groups. J. Math. Music 7(1), 3–27 (2013)

    Article  MathSciNet  Google Scholar 

  10. Hall, R.W.: Linear contextual transformations. In: Di Maio, G., Naimpally, S. (eds.) Theory and Applications of Proximity, Nearness, and Uniformity, pp. 101–29. Aracne Editrice, Rome (2009)

    Google Scholar 

  11. Hall, R.W., Tymoczko, D.: Submajorization and the geometry of unordered collections. Am. Math. Monthly 119(4), 263–83 (2012)

    Article  MathSciNet  Google Scholar 

  12. Hook, J.: Uniform triadic transformations. J. Music Theory 46(1–2), 57–126 (2002)

    Article  Google Scholar 

  13. Hook, J., Douthett, J.: Uniform triadic transformations and the music of Webern. Perspect. New Music 46(1), 91–151 (2008)

    Google Scholar 

  14. Kochavi, J.: Contextually defined musical transformations. Ph.D. diss., State University of New York at Buffalo (2002)

    Google Scholar 

  15. Milne, A.J., Bulger, D., Herff, S.A.: Exploring the space of perfectly balanced rhythms and scales. of Math. Music 11(3), 101–33 (2017)

    Article  MathSciNet  Google Scholar 

  16. Lambert, P.: On contextual inversion. Perspect. New Music 38(1), 45–76 (2000)

    Article  Google Scholar 

  17. Lewin, D.: Forte’s interval vector, my interval function, and Regener’s common-note function. J. Music Theory 21(2), 194–237 (1977)

    Article  Google Scholar 

  18. Lewin, D.: Re: intervallic relations between two collections of notes. J. Music Theory 3, 298–301 (1959)

    Article  Google Scholar 

  19. Lewin, D.: Special cases of the interval function between pitch-class sets X and Y. J. Music Theory 45, 1–29 (2001)

    Article  Google Scholar 

  20. Lewin, D.: Generalized Musical Intervals and Transformations, 2nd edn. Oxford University Press, Oxford (2011)

    Google Scholar 

  21. Lewin, D.: Musical Form and Transformation: Four Analytic Essays. Yale University Press, New Haven (1993)

    Google Scholar 

  22. Straus, J.: Contextual-inversion spaces. J. Music Theory 55(1), 43–88 (2011)

    Article  Google Scholar 

  23. Tymoczko, D.: Scale theory, serial theory, and voice leading. Mus. Anal. 27(1), 1–49 (2008)

    Article  Google Scholar 

  24. Tymoczko, D.: The generalized Tonnetz. J. Music Theory 56(1), 1–52 (2012)

    Article  Google Scholar 

  25. Tymoczko, D.: Tonality: an owners manual. Unpub. MS

    Google Scholar 

  26. Yust, J.: Applications of DFT to the theory of twentieth-century harmony. In: Collins, T., Meredith, D., Volk, A. (eds.) MCM 2015. LNCS (LNAI), vol. 9110, pp. 207–218. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20603-5_22

    Chapter  Google Scholar 

  27. Yust, J.: Schubert’s harmonic language and Fourier phase space. J. Music Theory 59(1), 121–81 (2015)

    Article  Google Scholar 

  28. Yust, J.: Special collections: renewing set theory. J. Music Theory 60(2), 213–62 (2016)

    Article  MathSciNet  Google Scholar 

  29. Yust, J.: Organized Time: Rhythm, Tonality, and Form. Oxford University Press, Oxford (2018)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Yust .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yust, J. (2019). Decontextualizing Contextual Inversion. In: Montiel, M., Gomez-Martin, F., Agustín-Aquino, O.A. (eds) Mathematics and Computation in Music. MCM 2019. Lecture Notes in Computer Science(), vol 11502. Springer, Cham. https://doi.org/10.1007/978-3-030-21392-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21392-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21391-6

  • Online ISBN: 978-3-030-21392-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics