Skip to main content

Non-Contextual JQZ Transformations

  • Conference paper
  • First Online:
Mathematics and Computation in Music (MCM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11502))

Included in the following conference series:

Abstract

Initiated by David Lewin, the contextual PLR-transformations are well known from neo-Riemannian theory. As it has been noted, these transformations are only used for major and minor triads. In this paper, we introduce non-contextual bijections called JQZ transformations that could be used for any kind of chord. These transformations are pointwise, and the JQZ group that they generate acts on any type of n-chord. The properties of these groups are very similar, and the JQZ-group could extend the PLR-group in many situations. Moreover, the hexatonic and octatonic subgroups of JQZ and PLR groups are subdual.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Observe, however, that applying the formulae (1) to chord inversions leads to: \(L\left\langle 0,4,7\right\rangle =\left\langle 11,7,4\right\rangle \) (Em), \(L\left\langle 7,4,0\right\rangle =\left\langle 9,0,4\right\rangle \) (Am) and \(L\left\langle 4,7,0\right\rangle =\left\langle 3,0,7\right\rangle \) (Cm). In this case, one can not use the equivalence of chord inversions. But these formulae can alternatively be interpreted as voicing transformations [10].

References

  1. Berry, C.: Thomas fiore hexatonic systems and dual groups in mathematical music theory. Involve J. Math. 11(2), 253–270 (2018)

    Article  Google Scholar 

  2. Crans, A.S., Fiore, T.M., Satyendra, R.: Musical actions of dihedral groups. Am. Math. Mon. 116(6), 479–495 (2009)

    Article  MathSciNet  Google Scholar 

  3. Cohn, R.: Neo-riemannian operations, parsimonious trichords, and their tonnetz representation. J. Music Theor. 41(1), 1–66 (1997)

    Article  Google Scholar 

  4. Cohn, R.: Introduction to neo-riemannian theory: a surveyand a historical perspective. J. Music Theory 42(2), 167–180 (1998)

    Article  Google Scholar 

  5. Cohn, R.: Audacious Euphony. Chromaticism and the Triad’s Second Nature. Oxford University Press, New York (2012)

    Book  Google Scholar 

  6. Douthett, J., Steinbach, P.: Parsimonious graphs: a study in parsimony, contextual transformation, and modes of limited transposition. J. Music Theor. 42(2), 241–263 (1998)

    Article  Google Scholar 

  7. Fiore, T., Satyendra, R.: Generalized contextual groups. Music Theory Online 11(3) (2005)

    Google Scholar 

  8. Fiore, T.M., Noll, T.: Commuting groups and the topos of triads. In: Agon, C., Andreatta, M., Assayag, G., Amiot, E., Bresson, J., Mandereau, J. (eds.) MCM 2011. LNCS (LNAI), vol. 6726, pp. 69–83. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21590-2_6

    Chapter  MATH  Google Scholar 

  9. Fiore, T., Noll, T., Satyendra, R.: Morphisms of generalized interval systems and PR-Groups. J. Math. Music 3, 3–27 (2013)

    Article  MathSciNet  Google Scholar 

  10. Fiore, T., Noll, T.: Voicing transformations and a linear representation of uniform triadic transformations. Siam J. Appl. Algebra Geom. 2(2), 281–313 (2018)

    Article  MathSciNet  Google Scholar 

  11. Hook, J.: Uniform triadic transformations. J. Music Theory 46(1/2), 57–126 (2002)

    Article  Google Scholar 

  12. Hyer, B.: Tonal Intuitions in Tristan Und Isolde. PhD diss., Yale University (1989)

    Google Scholar 

  13. Hyer, B.: Reimag(in)ing riemann. J. Music Theory 39(1), 101–138 (1995)

    Article  Google Scholar 

  14. Jedrzejewski, F.: Permutation groups and chord tesselations. In: ICMC Proceedings, Barcelona (2005)

    Google Scholar 

  15. Lewin, D.: Generalized Musical Intervals and Transformations. Yale University Press, New Haven and London (1987)

    Google Scholar 

  16. Riemann, H.: Handbuch der Harmonielehre. Breitkopf & Härte, Leipzig (1887)

    Google Scholar 

  17. Waller, D.A.: Some combinatorial aspects of the musical chords. Math. Gaz. 62, 12–15 (1978)

    Article  Google Scholar 

Download references

Acknowledgements

We thank anonymous reviewers for valuable remarks and Thomas Noll for comments that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck Jedrzejewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jedrzejewski, F. (2019). Non-Contextual JQZ Transformations. In: Montiel, M., Gomez-Martin, F., Agustín-Aquino, O.A. (eds) Mathematics and Computation in Music. MCM 2019. Lecture Notes in Computer Science(), vol 11502. Springer, Cham. https://doi.org/10.1007/978-3-030-21392-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21392-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21391-6

  • Online ISBN: 978-3-030-21392-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics