Advertisement

Multivariate Calibration

  • José Manuel Díaz-Cruz
  • Miquel Esteban
  • Cristina Ariño
Chapter
Part of the Monographs in Electrochemistry book series (MOEC)

Abstract

A brief description is given of the main methods of multivariate calibration, including classical least squares (CLS), inverse least squares (ILS), principal component regression (PCR) and partial least squares (PLS) as typical linear methods. Artificial neural networks (ANN) are also discussed as an example of calibration strategy especially designed for non-linear data. Several examples taken from literature are included to illustrate the application of multivariate calibration to the resolution of analytical problems by using electroanalytical measurements.

References

  1. 1.
    Esbensen KH, Guyot D, Westad F (2000) Multivariate data analysis in practice: an introduction to multivariate data analysis and experimental design, 4th edn. Camo, OsloGoogle Scholar
  2. 2.
    Brown SD, Tauler R, Walczak B (eds) (2009) Comprehensive chemometrics: chemical and biochemical data analysis. Elsevier, AmsterdamGoogle Scholar
  3. 3.
    Beebe KR, Kowalski BR (1987) Anal Chem 59:1007ACrossRefGoogle Scholar
  4. 4.
    Kowalski BR, Seasholtz MB (1991) J Chemom 5:129CrossRefGoogle Scholar
  5. 5.
    Gabrielsson J, Trygg J (2006) Crit Rev Anal Chem 36:243CrossRefGoogle Scholar
  6. 6.
    MATLAB, version R2009b (2009) Mathworks Inc. (ed). Natick, MA, USAGoogle Scholar
  7. 7.
    Octave GNU (2012) Available at http://www.gnu.org/software/octave
  8. 8.
    Andersen CM, Bro R (2010) J Chemom 24:728CrossRefGoogle Scholar
  9. 9.
    Balabin RM, Smirnov SV (2011) Anal Chim Acta 692:63CrossRefGoogle Scholar
  10. 10.
    Mehmood T, Liland KH, Snipen L, Sæbø S (2012) Chemom Intell Lab Syst 118:62Google Scholar
  11. 11.
    Araújo MCU, Saldanha TCB, Galvao RKH, Yoneyama T, Chame HC, Visani V (2001) Chemom Intell Lab Syst 57:65CrossRefGoogle Scholar
  12. 12.
    Leardi R (2001) J Chemom 15:559CrossRefGoogle Scholar
  13. 13.
    Lorber A, Wangen LE, Kowalski BR (1987) J Chemom 1:19CrossRefGoogle Scholar
  14. 14.
    Aragó M, Ariño C, Dago A, Díaz-Cruz JM, Esteban M (2016) Talanta 160:138CrossRefGoogle Scholar
  15. 15.
    Nascimento DS, Insausti M, Band BS, Lemos SG (2014) Fuel 137:172CrossRefGoogle Scholar
  16. 16.
    Escandar GM, Damiani PC, Goicoechea HC, Olivieri AC (2006) Microchem J 82:29CrossRefGoogle Scholar
  17. 17.
    González MJG, Renedo OD, Martínez MJA (2007) Talanta 71:691CrossRefGoogle Scholar
  18. 18.
    Qiu P, Ni Y, Kokot S (2014) J Environ Sci Health B 49:722CrossRefGoogle Scholar
  19. 19.
    Henao-Escobar W, Domínguez-Renedo O, Alonso-Lomillo MA, Arcos-Martínez MJ (2015) Talanta 143:97CrossRefGoogle Scholar
  20. 20.
    Ciepiela F, Sordoń W, Jakubowska M (2016) Electroanalysis 28:546CrossRefGoogle Scholar
  21. 21.
    Tang W, Bin J, Fan W, Zhang Z, Yun Y, Liang Y (2016) Anal Methods 8:5475CrossRefGoogle Scholar
  22. 22.
    Tonello N, Moressi MB, Robledo SN, D’Eramo F, Marioli JM (2016) Talanta 158:306CrossRefGoogle Scholar
  23. 23.
    Ni Y, Wang L, Kokot S (2001) Anal Chim Acta 431:101CrossRefGoogle Scholar
  24. 24.
    Shirmardi A, Shamsipur M, Akhond M, Monjezi J (2016) Measurement 88:27CrossRefGoogle Scholar
  25. 25.
    Cuartero M, Ruiz A, Oliva DJ, Ortuño JA (2017) Sens Actuat B-Chem 243:144CrossRefGoogle Scholar
  26. 26.
    Bataller R, Campos I, Laguarda-Miro N, Alcañiz M, Soto J, Martínez-Máñez R, Gil L, García-Breijo E, Ibáñez-Civera J (2012) Sensors 12:17553CrossRefGoogle Scholar
  27. 27.
    Labrador R, Olsson J, Winquist F, Martinez-Máñez R, Sotoa J (2009) Electroanalysis 21:612CrossRefGoogle Scholar
  28. 28.
    Campos I, Masot R, Alcañiz M, Gil L, Soto J, Vivancos JL, García-Breijo E, Labrador RH, Barat JM, Martínez-Mañez R (2010) Sens Actuat B-Chem 149:71CrossRefGoogle Scholar
  29. 29.
    Winquist F, Olsson J, Eriksson M (2011) Anal Chim Acta 683:192CrossRefGoogle Scholar
  30. 30.
    Pérez-Ràfols C, Serrano N, Díaz-Cruz JM, Ariño C, Esteban M (2017) Sens Actuat B-Chem 245:18CrossRefGoogle Scholar
  31. 31.
    Barker M, Rayens W (2003) J Chemom 17:166CrossRefGoogle Scholar
  32. 32.
    Ballabio D, Consonni V (2013) Anal Methods 5:3790CrossRefGoogle Scholar
  33. 33.
    Brereton RG, Lloyd GR (2014) J Chemom 28:213CrossRefGoogle Scholar
  34. 34.
    Pérez NF, Ferré J, Boqué R (2009) Chemom Intell Lab Sys 95:122CrossRefGoogle Scholar
  35. 35.
    Parra V, Arrieta AA, Fernández-Escudero JA, García H, Apetrei C, Rodríguez-Méndez ML, de Saja JA (2006) Sens Actuat B-Chem 115:54CrossRefGoogle Scholar
  36. 36.
    Pigani L, Foca G, Ionescu K, Martina V, Ulrici A, Terzi F, Vignali M, Zanardi C, Seeber R (2008) Anal Chim Acta 614:213CrossRefGoogle Scholar
  37. 37.
    Ciosek P, Wróblewski W (2008) Talanta 76:548CrossRefGoogle Scholar
  38. 38.
    Cetó X, Gutiérrez JM, Mimendia A, Céspedes F, del Valle M (2013) Electroanalysis 25:1635CrossRefGoogle Scholar
  39. 39.
    Silva AC, Paz JEM, Pontes LFL, Lemos SG, Pontes MJC (2013) Electrochim Acta 111:160CrossRefGoogle Scholar
  40. 40.
    Górski Ł, Sordoń W, Ciepiela F, Kubiak WW, Jakubowska M (2016) Talanta 146:231CrossRefGoogle Scholar
  41. 41.
    McCulloch WS, Pitts W (1943) Bull Math Biophys 5:115CrossRefGoogle Scholar
  42. 42.
    Pitts W, McCulloch WS (1947) Bull Math Biophys 9:127CrossRefGoogle Scholar
  43. 43.
    Despagne F, Massart DL (1998) Analyst 123:157RCrossRefGoogle Scholar
  44. 44.
    Krenker A, Kos A, Bešter J (2011) Introduction to the artificial neural networks. InTech Open Access PublisherGoogle Scholar
  45. 45.
    Maltarollo VG, Honório KM, da Silva ABF (2013) Applications of artificial neural networks in chemical problems. In: Artificial neural networks—architectures and applications. InTech Open Access PublisherGoogle Scholar
  46. 46.
    del Valle M (2012) Int J Electrochem 2012:1CrossRefGoogle Scholar
  47. 47.
    Walsh S, Diamond D (1995) Talanta 42:561CrossRefGoogle Scholar
  48. 48.
    Harris DC (1998) J Chem Educ 75:119CrossRefGoogle Scholar
  49. 49.
    Lasdon LS, Waren AD, Jain A, Ratner M (1978) ACM T Math Softw 4:34CrossRefGoogle Scholar
  50. 50.
    Zhang J, Walter GG, Miao Y, Lee WNW (1995) IEEE T Signal Process 43:1485CrossRefGoogle Scholar
  51. 51.
    Gutiérrez JM, Gutés A, Céspedes F, del Valle M, Muñoz R (2008) Talanta 76:373CrossRefGoogle Scholar
  52. 52.
    Cetó X, Céspedes F, Pividori MI, Gutiérrez JM, del Valle M (2012) Analyst 137:349CrossRefGoogle Scholar
  53. 53.
    Bessant C, Saini S (1999) Anal Chem 71:2806CrossRefGoogle Scholar
  54. 54.
    Richards E, Bessant C, Saini S (2002) Chemom Intell Lab Sys 61:35CrossRefGoogle Scholar
  55. 55.
    Palacios-Santander JM, Jimenez-Jimenez A, Cubillana-Aguilera LM, Naranjo-Rodriguez I, Hidalgo-Hidalgo-de-Cisneros JL (2003) Microchim Acta 142:27CrossRefGoogle Scholar
  56. 56.
    Moreno-Barón L, Cartas R, Merkoçi A, Alegret S, Gutiérrez JM, Leija L, Hernandez PR, Muñoz R, del Valle M (2005) Anal Lett 38:2189CrossRefGoogle Scholar
  57. 57.
    Gutés A, Ibáñez AB, del Valle M, Céspedes F (2006) Electroanalysis 18:82CrossRefGoogle Scholar
  58. 58.
    Ensafi AA, Khayamian T, Benvidi A, Mirmomtaz E (2006) Anal Chim Acta 561:225CrossRefGoogle Scholar
  59. 59.
    Torrecilla JS, Mena ML, Yáñez-Sedeño P, García J (2007) J Food Eng 81:544CrossRefGoogle Scholar
  60. 60.
    Istamboulie G, Cortina-Puig M, Marty JL, Noguer T (2009) Talanta 79:507CrossRefGoogle Scholar
  61. 61.
    Tesio AY, Robledo SN, Granero AM, Fernández H, Zon MA (2014) Sens Actuat B-Chem 203:655CrossRefGoogle Scholar
  62. 62.
    Serrano N, Prieto-Simón B, Cetó X, del Valle M (2014) Talanta 125:159CrossRefGoogle Scholar
  63. 63.
    Serrano N, González-Calabuig A, del Valle M (2015) Talanta 138:130CrossRefGoogle Scholar
  64. 64.
    Faura G, González-Calabuig A, del Valle M (2016) Electroanalysis 28:1894CrossRefGoogle Scholar
  65. 65.
    Harris DC (2016) Quantitative chemical analysis, 9th edn. W.H. Freeman, New YorkGoogle Scholar
  66. 66.
    Saxberg BE, Kowalski BR (1979) Anal Chem 51:1031CrossRefGoogle Scholar
  67. 67.
    Jochum C, Jochum P, Kowalski BR (1981) Anal Chem 53:85CrossRefGoogle Scholar
  68. 68.
    Kalivas JH, Kowalski BR (1981) Anal Chem 53:2207CrossRefGoogle Scholar
  69. 69.
    Kalivas JH (1983) Anal Chem 55:565CrossRefGoogle Scholar
  70. 70.
    Kalivas JH, Kowalski BR (1983) Anal Chem 55:532CrossRefGoogle Scholar
  71. 71.
    Gerlach RW, Kowalski BR (1982) Anal Chim Acta 134:119CrossRefGoogle Scholar
  72. 72.
    Frank IE, Kalivas JH, Kowalski BR (1983) Anal Chem 55:1800CrossRefGoogle Scholar
  73. 73.
    Lozano VA, Ibáñez GA, Olivieri AC (2009) Anal Chim Acta 651:165CrossRefGoogle Scholar
  74. 74.
    Lozano VA, Tauler R, Ibáñez GA, Olivieri AC (2009) Talanta 77:1715CrossRefGoogle Scholar
  75. 75.
    Peré-Trepat E, Lacorte S, Tauler R (2007) Anal Chim Acta 595:228CrossRefGoogle Scholar
  76. 76.
    Afkhami A, Abbasi-Tarighat M, Bahram M, Abdollahi H (2008) Anal Chim Acta 613:144CrossRefGoogle Scholar
  77. 77.
    Melucci D, Locatelli C (2012) J Electroanal Chem 675:25CrossRefGoogle Scholar
  78. 78.
    Martínez K, Ariño C, Díaz-Cruz JM, Serrano N, Esteban M (2018) Chemom Intell Lab Sys 178:32CrossRefGoogle Scholar
  79. 79.
    Pérez-Ràfols C, Puy-Llovera J, Serrano N, Ariño C, Esteban M, Díaz-Cruz JM (2019) Talanta 192:147CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • José Manuel Díaz-Cruz
    • 1
  • Miquel Esteban
    • 1
  • Cristina Ariño
    • 1
  1. 1.Faculty of ChemistryUniversity of BarcelonaBarcelonaSpain

Personalised recommendations