Skip to main content

Enhancing an Attack to DSA Schemes

  • Conference paper
  • First Online:
Algebraic Informatics (CAI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11545))

Included in the following conference series:

Abstract

In this paper, we improve the theoretical background of the attacks on the DSA schemes of a previous paper, and we present some new more practical attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The code can be found in https://github.com/drazioti/python_scripts/tree/master/paper_dsa.

References

  1. Bellare, M., Goldwasser, S., Micciancio, D.: “Pseudo-random” number generation within cryptographic algorithms: the DDS case. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 277–291. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052242

    Chapter  Google Scholar 

  2. Blake, I.F., Garefalakis, T.: On the security of the digital signature algorithm. Des. Codes Cryptogr. 26(1–3), 87–96 (2002)

    Article  MathSciNet  Google Scholar 

  3. Draziotis, K.A., Poulakis, D.: Lattice attacks on DSA schemes based on Lagrange’s algorithm. In: Muntean, T., Poulakis, D., Rolland, R. (eds.) CAI 2013. LNCS, vol. 8080, pp. 119–131. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40663-8_13

    Chapter  Google Scholar 

  4. Draziotis, K.A.: (EC)DSA lattice attacks based on Coppersmith’s method. Inform. Proc. Lett. 116(8), 541–545 (2016)

    Article  MathSciNet  Google Scholar 

  5. Faugère, J.-L., Goyet, C., Renault, G.: Attacking (EC)DSA given only an implicit hint. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 252–274. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35999-6_17

    Chapter  Google Scholar 

  6. FIPS PUB 186–3, Federal Information Processing Standards Publication, Digital Signature Standard (DSS)

    Google Scholar 

  7. Galbraith, S.: Mathematics of Public Key Cryptography. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  8. Hanrot, G., Pujol, X., Stehlé, D.: Algorithms for the shortest and closest lattice vector problems. In: Chee, Y.M., et al. (eds.) IWCC 2011. LNCS, vol. 6639, pp. 159–190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20901-7_10

    Chapter  MATH  Google Scholar 

  9. Hanrot, G., Stehlé, D.: Improved analysis of Kannan’s shortest lattice vector algorithm. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 170–186. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_10

    Chapter  Google Scholar 

  10. Johnson, D., Menezes, A.J., Vanstone, S.A.: The elliptic curve digital signature algorithm (ECDSA). Int. J. Inf. Secur. 1, 36–63 (2001)

    Article  Google Scholar 

  11. Howgrave-Graham, N.A., Smart, N.P.: Lattice attacks on digital signature schemes. Des. Codes Cryptogr. 23, 283–290 (2001)

    Article  MathSciNet  Google Scholar 

  12. Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: an update. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36095-4_19

    Chapter  Google Scholar 

  13. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997)

    MATH  Google Scholar 

  14. Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm for most lattice problems based on Voronoi cell computations. In: Proceedings of the 42nd ACM Symposium on Theory of Computing - STOC 2010, pp. 351–358. ACM (2010)

    Google Scholar 

  15. National Institute of Standards and Technology (NIST). FIPS Publication 186: Digital Signature Standard, May 1994

    Google Scholar 

  16. Nguyen, P.Q., Shparlinski, I.E.: The insecurity of the digital signature algorithm with partially known nonces. J. Cryptology 15, 151–176 (2002)

    Article  MathSciNet  Google Scholar 

  17. Nguyen, P.Q., Shparlinski, I.E.: The insecurity of the elliptic curve digital signature algorithm with partially known nonces. Des. Codes Cryptogr. 30, 201–217 (2003)

    Article  MathSciNet  Google Scholar 

  18. Poulakis, D.: Some lattice attacks on DSA and ECDSA. Appl. Algebra Eng. Commun. Comput. 22, 347–358 (2011)

    Article  MathSciNet  Google Scholar 

  19. Poulakis, D.: New lattice attacks on DSA schemes. J. Math. Cryptol. 10(2), 135–144 (2016)

    Article  MathSciNet  Google Scholar 

  20. Sage Mathematics Software, The Sage Development Team (version 8.1). http://www.sagemath.org

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos A. Draziotis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Adamoudis, M., Draziotis, K.A., Poulakis, D. (2019). Enhancing an Attack to DSA Schemes. In: Ćirić, M., Droste, M., Pin, JÉ. (eds) Algebraic Informatics. CAI 2019. Lecture Notes in Computer Science(), vol 11545. Springer, Cham. https://doi.org/10.1007/978-3-030-21363-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21363-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21362-6

  • Online ISBN: 978-3-030-21363-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics