Skip to main content

Link Prediction in Knowledge Graphs with Concepts of Nearest Neighbours

  • Conference paper
  • First Online:
The Semantic Web (ESWC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11503))

Included in the following conference series:

Abstract

The open nature of Knowledge Graphs (KG) often implies that they are incomplete. Link prediction consists in inferring new links between the entities of a KG based on existing links. Most existing approaches rely on the learning of latent feature vectors for the encoding of entities and relations. In general however, latent features cannot be easily interpreted. Rule-based approaches offer interpretability but a distinct ruleset must be learned for each relation, and computation time is difficult to control. We propose a new approach that does not need a training phase, and that can provide interpretable explanations for each inference. It relies on the computation of Concepts of Nearest Neighbours (CNN) to identify similar entities based on common graph patterns. Dempster-Shafer theory is then used to draw inferences from CNNs. We evaluate our approach on FB15k-237, a challenging benchmark for link prediction, where it gets competitive performance compared to existing approaches.

This research is supported by ANR project PEGASE (ANR-16-CE23-0011-08).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Companion page: http://www.irisa.fr/LIS/ferre/pub/link_prediction/.

  2. 2.

    We also ran it with advanced parameters on a 8-core server under AMIE+’s authors guidance. That led to many more rules but did not improve the results.

References

  1. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 34–43 (2001)

    Article  Google Scholar 

  2. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, pp. 2787–2795 (2013)

    Google Scholar 

  3. Denœux, T.: A k-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE Trans. Syst. Man Cybern. 25(5), 804–813 (1995)

    Article  Google Scholar 

  4. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings. In: McIlraith, S.A., Weinberger, K.Q. (eds.) Conference on Artificial Intelligence (AAAI), pp. 1811–1818. AAAI Press (2018)

    Google Scholar 

  5. Ferré, S.: Concepts de plus proches voisins dans des graphes de connaissances. In: Ingénierie des Connaissances (IC), pp. 163–174 (2017)

    Google Scholar 

  6. Ferré, S.: Answers partitioning and lazy joins for efficient query relaxation and application to similarity search. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 209–224. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_14

    Chapter  Google Scholar 

  7. Ferré, S., Cellier, P.: Graph-FCA in practice. In: Haemmerlé, O., Stapleton, G., Faron Zucker, C. (eds.) ICCS 2016. LNCS (LNAI), vol. 9717, pp. 107–121. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40985-6_9

    Chapter  MATH  Google Scholar 

  8. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.: Fast rule mining in ontological knowledge bases with AMIE+. Int. J. Very Large Data Bases 24(6), 707–730 (2015)

    Article  Google Scholar 

  9. Hermann, A., Ferré, S., Ducassé, M.: An interactive guidance process supporting consistent updates of RDFS graphs. In: ten Teije, A., et al. (eds.) EKAW 2012. LNCS (LNAI), vol. 7603, pp. 185–199. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33876-2_18

    Chapter  Google Scholar 

  10. Jianfeng, W., Jianxin, L., Yongyi, M., Shini, C., Richong, Z.: On the representation and embedding of knowledge bases beyond binary relations. In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 1300–1307 (2016)

    Google Scholar 

  11. Lao, N., Mitchell, T., Cohen, W.W.: Random walk inference and learning in a large scale knowledge base. In: Conference on Empirical Methods in Natural Language Processing, pp. 529–539. Association for Computational Linguistics (2011)

    Google Scholar 

  12. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inform. Sci. Technol. 58(7), 1019–1031 (2007)

    Article  Google Scholar 

  13. May, W.: Information extraction and integration with Florid: the Mondial case study. Technical report 131, Universität Freiburg, Institut für Informatik (1999). http://dbis.informatik.uni-goettingen.de/Mondial

  14. Meilicke, C., Fink, M., Wang, Y., Ruffinelli, D., Gemulla, R., Stuckenschmidt, H.: Fine-grained evaluation of rule- and embedding-based systems for knowledge graph completion. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 3–20. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6_1

    Chapter  Google Scholar 

  15. Muggleton, S.: Inverse entailment and Progol. New Gener. Comput. 13, 245–286 (1995)

    Article  Google Scholar 

  16. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2016)

    Article  Google Scholar 

  17. Plotkin, G.: Automatic methods of inductive inference. Ph.D. thesis, Edinburgh University, August 1971

    Google Scholar 

  18. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38

    Chapter  Google Scholar 

  19. Toutanova, K., Chen, D.: Observed versus latent features for knowledge base and text inference. In: Workshop on Continuous Vector Space Models and Their Compositionality, pp. 57–66 (2015)

    Google Scholar 

  20. Zhang, R., Li, J., Mei, J., Mao, Y.: Scalable instance reconstruction in knowledge bases via relatedness affiliated embedding. In: Conference on World Wide Web (WWW), pp. 1185–1194 (2018)

    Google Scholar 

Download references

Acknowledgement

I warmly thank Luis Galárraga for his support about AMIE+.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Ferré .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ferré, S. (2019). Link Prediction in Knowledge Graphs with Concepts of Nearest Neighbours. In: Hitzler, P., et al. The Semantic Web. ESWC 2019. Lecture Notes in Computer Science(), vol 11503. Springer, Cham. https://doi.org/10.1007/978-3-030-21348-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21348-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21347-3

  • Online ISBN: 978-3-030-21348-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics