Advertisement

Refractory Performances and Mechanism of Damages

  • Prasunjit Sengupta
Chapter

Abstract

This chapter deals with performance of Refractories in the Cement industry. The factors which determine the performance of Refractory are addressed in details. It shows that although Refractory quality is very important, the refractory performances depend only to a small extent on Refractory quality. The best quality refractory will not perform well if the other factors are not conducive. The effects of various factors, e.g., chemical, redox conditions, attack of liquid phases of clinker, and mechanical and thermo-mechanical stresses, on the refractory performances in kiln and other equipments are discussed at length. The effects of alternate fuels and the degradation of refractory in presence of alkali vapor and oxides of sulfur are discussed at length. The reactions of aluminosilicate refractories in presence of vanadium oxides are discussed. The mechanism of hydration of basic refractories is addressed. The effect of the mechanical factors like ovality, creep, cranking of kiln, etc. on refractory performance and the checking method are discussed in details with diagrams. The effect of overheating, flame character, etc. is discussed in detail. The effect of thermal shock, abrasion of clinker, and high-velocity dust-laden gases on refractories is discussed in details. The reason for Ring formation and build up in the kiln are discussed. The failure of refractories due to anchor failure and the sigma phase embrittlement of stainless steel is discussed in details. The effect of kiln diameter on the chance of falling of bricks from the lining is highlighted. Many photographs are there for different types of refractory damages and failures occur in actual services.

Keywords

Performance of refractory Flame impingement Improper combustion Hot spots Anchor failure Chemical corrosion Wetting Penetration of liquid Alternate fuel Eutectic Liquid phase Viscosity Alkali attack Melting of salts Sulfur reaction Vanadium reaction Chloride attack Destruction of refractories Spinel Hercynite Mayenite Wustite Monticellite Merwinite Hydration Redox reaction Thermal stress Thermo-mechanical stress Ovality Creep Rosenblad formula Cranking Clinker abrasion Spurrite Sigma phase of stainless steel Schaeffler-De Long diagram 

References

  1. 1.
    Refractory materials and coating formation – Holderbank Cement Seminar 2000.Google Scholar
  2. 2.
    The cement rotary kiln and its refractory lining – P. Bartha, Interceram, Refractories manual, 2004.Google Scholar
  3. 3.
    Stresses on Refractories – Challenges and solution – ECRA News letter, 2/2014.Google Scholar
  4. 4.
    Modern Refractory solutions for Cement rotary kiln-which brick suits which kiln section – H. Kunemann et.al. Tehran International conference on Refractories, 4–6 May, 2004.Google Scholar
  5. 5.
    Alternative fuels in cement manufacturing – Moses P.M. Chinyama, University of Malawi.Google Scholar
  6. 6.
    Alternate fuels – Understanding and meeting the challenges faced by refractories in Cement plants. – Dr. T. S. Svendsen, Hasle Refractories A/S.Google Scholar
  7. 7.
    RDF as Kiln Fuel – E. Joseph Duckett, Scwartz and Connolly Inc. Washington DC and David Weiss, National Center for resource recovery Inc. Washington D.C.Google Scholar
  8. 8.
    Prediction of the chemical loading of refractories in a cement rotary kiln by means of process simulation – Robert Emler et.al, UNITECR 2007 proceedings, pp 577–581.Google Scholar
  9. 9.
    Monolithic linings of cement kilns under conditions of combustion of alternative fuel Ing. Milan Henek, et.al, Prumyslova Keramica, Spol. sr.o, Rajec Zestrebi.Google Scholar
  10. 10.
    Alternative fuels for cement industry – A review, Rajendra K Patil and Mohan P Khand, Proceedings of the 2014 International conference on Industrial Engineering and Operation management, Bali, Indonesia, Jan 7–9, 2014.Google Scholar
  11. 11.
    A case study of high temperature corrosion in cement rotary kiln – J.H. Potgeiter et. al. The Journal of South African Institute of Mining and Metallurgy, Nov. 2004.Google Scholar
  12. 12.
    Direct and Indirect slag corrosion of Oxide and Oxide-C Refractories – W.E. Lee, S. Zhang, VII International Conference on molten Slag, fluxes and salt, The South African Institute of Mining and Metallurgy, 2004.Google Scholar
  13. 13.
    Corrosion of Refractories – Dennis A Brosnan, A chapter in the Refractories handbook, Edited by Charles A Schacht, Mercel Dekker Inc. New York.Google Scholar
  14. 14.
    Rotary Cement Kiln – Kurt E. Peray, Edward Arnold, Chapter-9.Google Scholar
  15. 15.
    Burnability and Clinkerization of Cement raw mixes – T.K. Chatterjee, Progress in Cement and Concrete technology, Pergamon press, Page-10-56.Google Scholar
  16. 16.
    Understanding clinker liquid phase – RicardoMosci.Google Scholar
  17. 17.
    Corrosion mechanism of Refractory bricks lining in the Cement Kiln – Montadher A Muhammed et.al. – The Iraqi Journal of Mechanical and Material Engineering, Vol 9, No 2, 2009.Google Scholar
  18. 18.
    Chemical degradation map for sodium attack on refractories – K. Tschope, J. Rutlin, T. Grande, Dept of Material science and engineering, Norwegian University of science and technology, Trondheim, Light metals 2010.Google Scholar
  19. 19.
    Alkali attack on cement plant refractories – an alternative perspective, – Michael Walton, Prinicipal, Refmet, Melbourne.Google Scholar
  20. 20.
    Study of Refractory bricks with improved alkali resistance for the Cement industry – V. Demirsan and I. Buyukcayir, Refractory world forum, s(2013)1.Google Scholar
  21. 21.
    Alkali corrosion of refractories in Cement kiln – PPT, E. Schlegel, C.G. Aneziris and U. Fischer, Bergakademie, Technische Universitat, Freiberg.Google Scholar
  22. 22.
    Installation and performance of Monolithic materials with graded alkali resistance, Kai Bemdiek and Hans-Jurgen Klischat, UNITECR Proceedings 2011, 2-B2-1.Google Scholar
  23. 23.
    Development of alkali resistant refractories for Cement industry. – P. Sengupta and Nitesh Gupta, AUCBM conference, proceedings, 2010.Google Scholar
  24. 24.
    Sulfur release during alternate fuel combustion in Cement rotary kilns – Kortada Mut, Maria del Mar, Ph.D Thesis, Technical University of Denmark, 2014.Google Scholar
  25. 25.
    Impact of alternate fuels on industrial Refractories and Refractory insulation application – ORNL report Metals and Ceramics Division, by G.C. Wei and V.J. Tennery, 1976.Google Scholar
  26. 26.
    Identification of Refractory material failure in Cement kiln – Peter Lugisani, M.Sc Thesis, University of Witwatersrand, Johannesburg, South Africa.Google Scholar
  27. 27.
    Hybrid spinel technology for basic bricks in chemically highly loaded cement rotary kiln – G. Gelbman et.al, UNITECR Proceedings, 2013, pp 168–170.Google Scholar
  28. 28.
    Development of Magnesia Spinel brick for transition zone in cement rotary kiln under the vastly increasing use of waste- Makoto Ohno et.al. – UNITECR Proceedings – 2013, pp 193–197.Google Scholar
  29. 29.
    Interaction of MgO-MgR2O4 Refractories with SO2 containing gases – N.Z. Fotoyi and R.H. Eric, Minteq, South Africa, and University of Witwatersrand, Johannesburgh, South Africa.Google Scholar
  30. 30.
    Identification of Refractory material failure in Cement kiln – Peter Lugisani, M.Sc Thesis, University of Witwatersrand, Johannesburg, South Africa.Google Scholar
  31. 31.
    Influence of Magnesia in infiltration of Magnesia Spinel Refractory bricks by different clinkers – G.E. Goncalves, et.al. REM: R. Esc. Minas, Ouro Preto, 68(4), 409–415, oct. dec. 2015.Google Scholar
  32. 32.
    Corrosion of basic refractories in contact with cement clinker and kiln hot meal – Jacek Szczerba, Journal of material science and chemical engineering, 2014, 2, 16–25.Google Scholar
  33. 33.
    Magnesia Refractory dry out – managing the risk of hydration – J.D. Steencamp et.al, The journal of Southern African Institute of mining and metallurgy, Volm – 111, June 2011.Google Scholar
  34. 34.
    Case study involving the hydration of Magnesite containing brick – Richard C Caldon and Patrick D McNamara, UNITECR proceedings, 2009.Google Scholar
  35. 35.
    Hydration mechanism of Magnesia based Refractory bricks, Thesis submitted by Shuxin Zhou, Metals and Material Engineering, University of British Columbia, 2004.Google Scholar
  36. 36.
    Test of the degree of hydration of Magnesia Chrome and Magnesia Spinel bricks- RHI AG Refractories.Google Scholar
  37. 37.
    Identification of Refractory material failure in Cement kilns corrections – Ph.D Thesis paper, Peter Lugisani, University of Witwatersrand.Google Scholar
  38. 38.
    Benefits of Modern Doloma-Magnesia linings in Modern Cement kilns – Johannes Heartenstein and Ronald Krischanitz, The Journal of Refractory Innovation, RHI-Magnesita, 2018.Google Scholar
  39. 39.
    Optimization of burner kiln 7, Cementa slite – Fred Gronwall, SLU, Swedish University of Agricultural Science, Faculty of natural resources and agricultural sciences, Department of energy and technology.Google Scholar
  40. 40.
    Infinity Cement equipment – everything-need-know-cement-kiln-flame https://www.cementequipment.org/home/firing-systems/everything-need-know-cement-kiln-flame/.
  41. 41.
    Interrelation between lining service life and kiln ovalities – Yoshiki Tuchiya et al UNITECR 1995, pp 241–247.Google Scholar
  42. 42.
    Mechanical Kiln Inspection – FL Smidth.Google Scholar
  43. 43.
    Damage of Refractories lined in Cement rotary kiln – Makoto Ono and Hisao Kozuka, Teheran International Conference on Refractories, 4–6 May, 2004.Google Scholar
  44. 44.
    Numerical evaluation of brick lining status in Rotary kiln – Dmitrij Ramaneka, Thesis, Lulea University of Technology, 2015.Google Scholar
  45. 45.
    The measurement of shells elastic ovality as essential element of diagnostic of rotary drum’s technical state. – Maciej Switalski, Diagnostyka, 1(53) 2010.Google Scholar
  46. 46.
    Rotary kiln alignment in dynamic condition – Zbigniew Krystowczyk, Cement and building materials, 15th March, 2004.Google Scholar
  47. 47.
    Technical documentation of Geoservex – Results of deviation measurement and geometry of kiln No 1 at Exemplary Cement Plant, 30th March – 16th April.Google Scholar
  48. 48.
    Creep measurement – Walter Gebhart, Facebook Comment.Google Scholar
  49. 49.
    Best available techniques for the Cement industry – CEMBUREAU, 1999.Google Scholar
  50. 50.
    Sulfur, Spurrite and Rings – always a headache for the kiln operator – Josef Nievoll et. Al, RHI Bulletin >2>2017.Google Scholar
  51. 51.
    Kiln exit build ups – Study of alkali and sulfur volatilization – Presbury B. West, Portland Cement association, 1995.Google Scholar
  52. 52.
    When a Refractory failure Isn’t – an anchor issue – Michael C Walton and Paul A. Plater, Refmet, PRAHRAN, Victoria 3181, Australia.Google Scholar
  53. 53.
    Anchor selection for Monolithic lining – Technical Bulletin, Harbison-Walkar Refractories Company.Google Scholar
  54. 54.
    Sigma phase embrittlement of stainless steel in FCC service – Jorge Hau and Anthonio Seijas, Corrosion Nacexpo, 61st Conference and exposition.Google Scholar
  55. 55.
    Microstructural and mechanical characterization of 301 stainless steel welded joints. – Aurora Poinescu et.al, Journal of arts and science, No1 (42), pp 275–282, 2018.Google Scholar
  56. 56.
    Installation of Refractory materials – PPT by Rainer Gocht, Refractechnik GmbH.Google Scholar
  57. 57.
    The problems of rotary kilns of cement and their remedies – Mohammed Mosle Salman and Asmaa Madhe Ali, International journal of Civil Engineering and technology, Vol 10, Issue 2, 2019.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Prasunjit Sengupta
    • 1
  1. 1.Technical Director of M/S SKG Refractories Ltd.NagpurIndia

Personalised recommendations