The Truth of Proof: A Hegelian Perspective on Constructivism

Part of the Logic, Epistemology, and the Unity of Science book series (LEUS, volume 44)


In the constructivist movement, which started with Brouwer’s attack on the principles of classical logic and mathematics, the history of mathematics seems to repeat itself in a specific, self-conscious way. The main objective of this paper is to describe this approach by adopting the phenomenological method of Hegel. Its starting point consists in looking at knowledge as a continuous, yet painful, process—the Calvary of the Spirit—with its stations corresponding to the naive, direct concepts of experience as based on sense certainty or belief in the independent realms of objects and their transformation into more sophisticated, socially charged theories. The signs of this advance are the patterns of self-consciousness, such as Cantor’s diagonal results, adopted by constructivism in a different but still powerful way. The key concept against which the progress of this development will be measured within the constructivist movement is the concept of proof, particularly with respect to Gödel theorems and the resulting split of knowledge into proof and truth. I will read this split, with the help of Lorenzen and Brandom, as a relative differentiation between two co-dependent aspects of self-consciousness that are to be prospectively conceived as two idealized dialogue partners.


Intuition Brouwer Diagonalization Truth Proof Constructivism Self-consciousness Hilbert Hegel Lorenzen Gödel theorems 



The author would like to thank Professor Pirmin Stekeler-Weithofer for valuable conversations on the subject and Dr. Tereza Matějčková for the detailed comments on the final draft of the paper.


  1. Aristotle. (1998). Metaphysics. (H. Lawson-Tancred, Trans). London: Penguin Classics.Google Scholar
  2. Bishop, E., & Bridges, D. (1980). Constructive analysis. Berlin: Springer.Google Scholar
  3. Brandom, R. (1994). Making it explicit: Reasoning, representing, and discursive commitment. Cambridge, MA: Harvard University Press.Google Scholar
  4. Brandom, R. (2000). Articulating reasons. An introduction to inferentialism. Cambridge, MA: Harvard University Press.Google Scholar
  5. Brouwer, L. E. J. (1907). Over de grondslagen der wiskunde (Ph.D. Thesis). Amsterdam: Universiteit van Amsterdam.Google Scholar
  6. Brouwer, L. E. J. (1975). Collected Works I. In A. Heyting (Ed.). Amsterdam: North-Holland.Google Scholar
  7. Frege, G. (1893/1903). Grundgesetze der Arithmetik I–II: Begriffsschriftlich abgeleitet. Jena: H. Pohle.Google Scholar
  8. Gettier, E. (1963). Is justified true belief knowledge? Analysis, 23, 121–123.CrossRefGoogle Scholar
  9. Gödel, K. (1931). Über formal unentscheidbare Sätze der ‘Principia Mathematica’ und verwandter Systeme I. Monatshefte für Mathematik und Physik, 37, 349–360.CrossRefGoogle Scholar
  10. Gödel, K. (1995). Some basic theorems on the foundations of mathematics and their implications. In S. Feferman, J. W. Dawson, W. Goldfarb, C. Parsons, & R. M. Solovay (Eds.), Collected works III (pp. 304–323). Oxford: Oxford University Press.Google Scholar
  11. Gödel, K. (2003). Collected works V. Correspondence H-Z. In S. Feferman, J. W. Dawson, W. Goldfarb, C. Parsons, & W. Sieg (Eds.), Oxford: Oxford University Press.Google Scholar
  12. Hegel, G. W. F. (1977). Phenomenology of spirit (A. V. Miller, Trans.). Oxford: Oxford University Press.Google Scholar
  13. Hegel, G. W. F. (2010). The science of logic (G. di Giovanni, Trans.). Cambridge: Cambridge University Press.Google Scholar
  14. Heyting, A. (1956). Intuitionism. An introduction. Amsterdam: North-Holland Publishing Company.Google Scholar
  15. Hilbert, D. (1926). Über das Unendliche. Mathematische Annalen, 95, 161–190.CrossRefGoogle Scholar
  16. Hilbert, D. (1930). Naturerkennen und Logik. Die Naturwissenschaften, 18, 959–963.CrossRefGoogle Scholar
  17. Hilbert, D. (1935). Gesammelte Abhandlungen. Dritter Band: Analysis, Grundlagen der Mathematik, Physik, Verschiedenes. Lebensgeschichte. Berlin: Springer.Google Scholar
  18. Kant, I. (1781/1787). Kritik der reinen Vernunft. Riga: Johann Friedrich Hartknoch.Google Scholar
  19. Kolman, V. (2009). What do Gödel theorems tell us about Hilbert’s solvability thesis? In M. Peliš (Ed.), Logica Yearbook 08 (pp. 83–94). London: College Publications.Google Scholar
  20. Kolman, V. (2010). Continuum, name, and paradox. Synthese, 175, 351–367.CrossRefGoogle Scholar
  21. Kolman, V. (2015). Logicism as making arithmetic explicit. Erkenntnis, 80, 487–503.CrossRefGoogle Scholar
  22. Kolman, V. (2016a). Zahlen. Berlin: de Gruyter.Google Scholar
  23. Kolman, V. (2016b). Hegel’s bad infinity as a logical problem. Hegel-Bulletin, 37, 258–280.CrossRefGoogle Scholar
  24. Kolman, V. (2018). Intuition and the end of all -Isms. Organon F, 25, 392–409.Google Scholar
  25. Kvasz, L. (2008). Patterns of change. Linguistic innovations in the development of classical mathematics. Basel: Birhäuser.Google Scholar
  26. Lorenzen, P. (1955). Einführung in die operative Logik und Mathematik. Berlin: Springer.CrossRefGoogle Scholar
  27. Lorenzen, P. (1962). Metamathematik. Mannheim: Bibliographisches Institut.Google Scholar
  28. Lorenzen, P., & Lorenz, K. (1978). Dialogische Logik. Darmstadt: Wissenschaftliche Buchgesellschaft.Google Scholar
  29. Lorenzen, P. (1984). Elementargeometrie. Mannheim: Bibliographisches Institut.Google Scholar
  30. Plato. Parmenides (1961). In E. Hamilton & H. Cairns (Eds.), The collected dialogues (F. M. Conford., Tran., pp. 920–957). Princeton, NJ: Princeton University Press.Google Scholar
  31. Schütte, K. (1960). Beweistheorie. Berlin: Springer.Google Scholar
  32. Stekeler-Weithofer, P. (1995). Sinn-Kriterien. Die logischen Grundlagen kritischer Philosophie von Platon bis Wittgenstein. Padeborn: Schöningh.Google Scholar
  33. Stekeler-Weithofer, P. (2008). Formen der Anschauung, Eine Philosophie der Mathematik. Berlin: de Gruyter.Google Scholar
  34. Stekeler-Weithofer, P. Hegel’s analytic pragmatism (Unpublished). See
  35. Wittgenstein, L. (1953). Philosophical investigations. Oxford: Blackwell.Google Scholar
  36. Wittgenstein, L. (1964). Philosophical remarks. Oxford: Blackwell.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Philosophy, Czech Academy of SciencesPragueCzech Republic

Personalised recommendations