Skip to main content

Designer Milk

  • Chapter
  • First Online:

Abstract

Milk is an important component of nutrition of human and animal neonates and has attracted interest of food technologists, clinicians, and biochemists. Composition of milk can be modified by dietary manipulations of milch animals and altering the genetic make-up of milk-producing species.

Highlights

  • Milk can be modified by dietary and genetic manipulation

  • Milk having modified constituents has applications to improve health.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • An L, Yang L, Huang Y, Cheng Y, Du F (2019) Generating goat mammary gland bioreactors for producing recombinant proteins by gene targeting. Methods Mol Biol 1874:391–401. https://doi.org/10.1007/978-1-4939-8831-0_23

    Article  Google Scholar 

  • Bainbridge ML, Saldinger LK, Barlow JW, Alvez JP, Roman J, Kraft J (2018) Alteration of rumen bacteria and protozoa through grazing regime as a tool to enhance the bioactive fatty acid content of bovine milk. Front Microbiol 9:904. https://doi.org/10.3389/fmicb.2018.00904 (eCollection)

    Article  PubMed  PubMed Central  Google Scholar 

  • Bleck GT, White BR, Miller DJ, Wheeler MB (1998) Production of bovine alpha-lactalbumin in the milk of transgenic pigs. J Anim Sci 76(12):3072–3078

    Article  CAS  Google Scholar 

  • Brophy B, Smolenski G, Wheeler T, Wells D, L’Huillier P, Laible G (2003) Cloned transgenic cattle produce milk with higher levels of beta-casein and kappa-casein. Nat Biotechnol 21(2):157–162

    Article  CAS  Google Scholar 

  • Clark AJ, Ali S, Archibald AL, Bessos H, Brown P, Harris S, McClenaghan M, Prowse C, Simons JP, Whitelaw CBA, Wilmut I (1989) The molecular manipulation of milk composition. Genome 31(2):950–955 (Review)

    Article  CAS  Google Scholar 

  • Hayes M, Stanton C, Fitzgerald GF, Ross RP (2007) Putting microbes to work: dairy fermentation, cell factories and bioactive peptides. Part II: bioactive peptide functions. Biotechnol J 2(4):435–449 (Review)

    Article  CAS  Google Scholar 

  • Henno M, Ariko T, Kaart T, Kuusik S, Ling K, Kass M, Jaakson H, Leming R, Givens DI, Sterna V, Ots M (2018) The fatty acid composition of Estonian and Latvian retail milk; implications for human nutrition compared with a designer milk. J Dairy Res 85(2):247–250. https://doi.org/10.1017/S0022029918000183

    Article  CAS  PubMed  Google Scholar 

  • Jochum F, Alteheld B, Meinardus P, Dahlinger N, Nomayo A, Stehle P (2017) Mothers’ consumption of soy drink but not black tea increases the flavonoid content of term breast milk: a pilot randomized, controlled intervention study. Ann Nutr Metab 70(2):147–153. https://doi.org/10.1159/000471857 (Epub 2017 Apr 8)

    Article  CAS  PubMed  Google Scholar 

  • Kling J (2009) First US approval for a transgenic animal drug. Nat Biotechnol 27(4):302–304. https://doi.org/10.1038/nbt0409-302

    Article  CAS  PubMed  Google Scholar 

  • Krimpenfort P, Rademakers A, Eyestone W, van der Schans A, van den Broek S, Kooiman P, Kootwijk E, Platenburg G, Pieper F, Strijker R et al (1991) Generation of transgenic dairy cattle using ‘in vitro’ embryo production. Biotechnology (NY) 9(9):844–847

    CAS  Google Scholar 

  • LeMay-Nedjelski L, Copeland J, Wang PW, Butcher J, Unger S, Stintzi A, O’Connor DL (2018) Methods and strategies to examine the human breastmilk microbiome. Methods Mol Biol 1849:63–86. https://doi.org/10.1007/978-1-4939-8728-3_5

    Article  PubMed  Google Scholar 

  • Lourenço M, Ramos-Morales E, Wallace RJ (2010) The role of microbes in rumen lipolysis and biohydrogenation and their manipulation. Animal 4(7):1008–1023. https://doi.org/10.1017/S175173111000042X

    Article  CAS  PubMed  Google Scholar 

  • Lu R, Zhang T, Wu D, He Z, Jiang L, Zhou M, Cheng Y (2018) Production of functional human CuZn-SOD and EC-SOD in bitransgenic cloned goat milk. Transgenic Res https://doi.org/10.1007/s11248-018-0080-3

    Article  CAS  Google Scholar 

  • Maga EA, Cullor JS, Smith W, Anderson GB, Murray JD (2006) Human lysozyme expressed in the mammary gland of transgenic dairy goats can inhibit the growth of bacteria that cause mastitis and the cold-spoilage of milk. Foodborne Pathog Dis 3(4):384–392. https://doi.org/10.1089/fpd.2006.3.384

    Article  CAS  PubMed  Google Scholar 

  • Mal G, Singh B, Mane BG, Sharma V, Sharma R, Bhar R, Dhar JB (2018) Milk composition, antioxidant activities and protein profile of Gaddi goat milk. J Food Biochem (in press). https://doi.org/10.1111/jfbc.12660

    Article  Google Scholar 

  • Meignan T, Lechartier C, Chesneau G, Bareille N (2017) Effects of feeding extruded linseed on production performance and milk fatty acid profile in dairy cows: a meta-analysis. J Dairy Sci 100(6):4394–4408. https://doi.org/10.3168/jds.2016-11850

    Article  CAS  PubMed  Google Scholar 

  • Menchaca A, Anegon I, Whitelaw CB, Baldassarre H, Crispo M (2016) New insights and current tools for genetically engineered (GE) sheep and goats. Theriogenology 86(1):160–169. https://doi.org/10.1016/j.theriogenology.2016.04.028 (Epub. Review)

    Article  CAS  Google Scholar 

  • Metzger SA, Hernandez LL, Suen G, Ruegg PL (2018) Understanding the milk microbiota. Vet Clin North Am Food Anim Pract 34(3):427–438. https://doi.org/10.1016/j.cvfa.2018.06.003

    PubMed  Google Scholar 

  • Monaco MH, Gronlund DE, Bleck GT, Hurley WL, Wheeler MB, Donovan SM (2005) Mammary specific transgenic over-expression of insulin-like growth factor-I (IGF-I) increases pigmilk IGF-I and IGF binding proteins, with no effect on milk composition or yield. Transgenic Res 14(5):761–773

    Article  CAS  Google Scholar 

  • Nature Biotechnology (2014) Rabbit milk Ruconest for hereditary angioedema. 32:849. https://doi.org/10.1038/nbt0914-849d

  • Platenburg GJ, Kootwijk EP, Kooiman PM, Woloshuk SL, Nuijens JH, Krimpenfort PJ, Pieper FR, de Boer HA, Strijker R (1994) Expression of human lactoferrin in milk of transgenic mice. Transgenic Res 3(2):99–108

    Article  CAS  Google Scholar 

  • Simons JP, McClenaghan M, Clark AJ (1987) Alteration of the quality of milk by expression of sheep beta-lactoglobulin in transgenic mice. Nature 328(6130):530–532

    Article  CAS  Google Scholar 

  • Toral PG, Monahan FJ, Hervás G, Frutos P, Moloney AP (2018) Review: modulating ruminal lipid metabolism to improve the fatty acid composition of meat and milk. Challenges and opportunities. Animal. 1–10. https://doi.org/10.1017/s1751731118001994

    Article  CAS  Google Scholar 

  • Wall RJ, Powell AM, Paape MJ, Kerr DE, Bannerman DD, Pursel VG, Wells KD, Talbot N, Hawk HW (2005) Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nat Biotechnol 23(4):445–451 (Epub 2005 Apr 3. Erratum in: Nat Biotechnol. 23(7):897)

    Article  CAS  Google Scholar 

  • Wang Y, Ding F, Wang T, Liu W, Lindquist S, Hernell O, Wang J, Li J, Li L, Zhao Y, Dai Y, Li N (2017) Purification and characterization of recombinant human bile salt-stimulated lipase expressed in milk of transgenic cloned cows. PLoS One 12(5):e0176864

    Article  Google Scholar 

  • Wang S, Deng S, Cao Y, Zhang R, Wang Z, Jiang X, Wang J, Zhang X, Zhang J, Liu G, Lian Z (2018) Overexpression of toll-like receptor 4 contributes to phagocytosis of salmonella enterica serovar typhimurium via phosphoinositide 3-kinase signaling in sheep. Cell Physiol Biochem 49(2):662–677. https://doi.org/10.1159/000493032 (Epub 2018 Aug 30)

    Article  CAS  PubMed  Google Scholar 

  • Wei J, Wagner S, Maclean P, Brophy B, Cole S, Smolenski G, Carlson DF, Fahrenkrug SC, Wells DN, Laible G (2018) Cattle with a precise, zygote-mediated deletion safely eliminate the major milk allergen beta-lactoglobulin. Sci Rep 8(1):7661. https://doi.org/10.1038/s41598-018-25654-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitelaw CB, Joshi A, Kumar S, Lillico SG, Proudfoot C (2016) Genetically engineering milk. J Dairy Res 83(1):3–11. https://doi.org/10.1017/S0022029916000017 (Review)

    Article  CAS  PubMed  Google Scholar 

  • Wolf E, Jehle PM, Weber MM, Sauerwein H, Daxenberger A, Breier BH, Besenfelder U, Frenyo L, Brem G (1997) Human insulin-like growth factor I (IGF-I) produced in the mammary glands of transgenic rabbits: yield, receptor binding, mitogenic activity, and effects on IGF-binding proteins. Endocrinology 138(1):307–313

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birbal Singh .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, B., Mal, G., Gautam, S.K., Mukesh, M. (2019). Designer Milk. In: Advances in Animal Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-21309-1_38

Download citation

Publish with us

Policies and ethics