Skip to main content

Parthenogenesis—A Potential Tool to Reproductive Biotechnology

  • Chapter
  • First Online:
Advances in Animal Biotechnology
  • 1550 Accesses

Abstract

Parthenogenesis is a form of asexual reproduction in some organisms in which oocyte develops into an embryo without fertilization by sperm. Parthenogenesis is a natural process of reproduction in a few lower invertebrates while higher vertebrates such as humans, mice, and farm animal species have relinquished reproduction by parthenogenesis. However, oocytes can be activated or induced to develop into blastocysts by means of parthenogenetic activation albeit with remarkably low success rates. Parthenogenetic embryos serve as sources of haploid embryonic stem cells may occasionally produce live offspring.

Highlights

  • Parthenogenesis is an asexual mode of reproduction in some lower animals

  • Parthenogenetic embryos have applications in stem cell biology, animal biotechnology, and biomedical sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bai M, Wu Y, Li J (2016) Generation and application of mammalian haploid embryonic stem cells. J Int Med 280(3):236–245. https://doi.org/10.1111/joim.12503 (Epub 2016 May 3)

    Article  CAS  Google Scholar 

  • Beatty RA (1957) Parthenogenesis and polyploidy in mammalian development. Cambridge University Press, London

    Google Scholar 

  • Campbell KH (1999) Nuclear equivalence, nuclear transfer, and the cell cycle. Cloning 1(1):3–15. Review

    Article  CAS  PubMed  Google Scholar 

  • Cheng L (2008) More new lines of human parthenogenetic embryonic stem cells. Cell Res 18(2):215–217. https://doi.org/10.1038/cr.2008.19

    Article  CAS  PubMed  Google Scholar 

  • Cibelli JB, Grant KA, Chapman KB, Cunniff K, Worst T, Green HL, Walker SJ, Gutin PH, Vilner L, Tabar V, Dominko T, Kane J, Wettstein PJ, Lanza RP, Studer L, Vrana KE, West MD (2002) Parthenogenetic stem cells in nonhuman primates. Science 295(5556):819

    Article  CAS  PubMed  Google Scholar 

  • Dev K, Giri SK, Kumar A, Yadav A, Singh B, Gautam SK (2012) Expression of transcriptional factor genes (Oct-4, Nanog, and Sox-2) and embryonic stem cell-like characters in placental membrane of Buffalo (Bubalus bubalis). J Membr Biol 245(4):177–183. https://doi.org/10.1007/s00232-012-9427-5

    Article  CAS  PubMed  Google Scholar 

  • Dighe V, Clepper L, Pedersen D, Byrne J, Ferguson B, Gokhale S, Penedo MC, Wolf D, Mitalipov S (2008) Heterozygous embryonic stem cell lines derived from nonhuman primate parthenotes. Stem Cells 26(3):756–766. https://doi.org/10.1634/stemcells.2007-0869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eggan K, Akutsu H, Loring J, Jackson-Grusby L, Klemm M, Rideout WM 3rd, Yanagimachi R, Jaenisch R (2001) Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc Natl Acad Sci U S A 98(11):6209–6214 (Epub 2001 May 1)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espejel S, Eckardt S, Harbell J, Roll GR, McLaughlin KJ, Willenbring H (2014) Brief report: parthenogenetic embryonic stem cells are an effective cell source for therapeutic liver repopulation. Stem Cells 32(7):1983–1988. https://doi.org/10.1002/stem.1726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Everett CA, West JD (1998) Evidence for selection against tetraploid cells in tetraploid <-->diploid mouse chimaeras before the late blastocyst stage. Genet Res 72(3):225–228

    Article  CAS  PubMed  Google Scholar 

  • Fukui Y, Sakuma Y (1980) Maturation of bovine oocytes cultured in vitro: relation to ovarian activity, follicular size and the presence or absence of cumulus cells. Biol Reprod 22(3):669–673. https://doi.org/10.1093/biolreprod/22.3.669

    Article  CAS  PubMed  Google Scholar 

  • Funahashi H, Cantley TC, Stumpf TT, Terlouw SL, Day BN (1994) In vitro development of in vitro-matured porcine oocytes following chemical activation or in vitro fertilization. Biol Reprod 50(5):1072–1077

    Article  CAS  PubMed  Google Scholar 

  • GĂłmez MC, Jenkins JA, Giraldo A, Harris RF, King A, Dresser BL, Pope CE (2003) Nuclear transfer of synchronized african wild cat somatic cells into enucleated domestic cat oocytes. Biol Reprod 69(3):1032–1041 (Epub 2003 May 28)

    Article  PubMed  Google Scholar 

  • Grabiec A, Max A, Tischner M (2007) Parthenogenetic activation of domestic cat oocytes using ethanol, calcium ionophore, cycloheximide and a magnetic field. Theriogenology 67(4):795–800

    Article  CAS  PubMed  Google Scholar 

  • Hagemann LJ, Hillery-Weinhold FL, Leibfried Rutledge ML, First NL (1995) Activation of murine oocytes with Ca2+ ionophore and cycloheximide. J Exp Zool 271(1):57–61

    Article  CAS  PubMed  Google Scholar 

  • Hirabayashi M, Hara H, Goto T, Takizawa A, Dwinell MR, Yamanaka T, Hochi S, Nakauchi H (2017) Haploid embryonic stem cell lines derived from androgenetic and parthenogenetic rat blastocysts. J Reprod Dev 63(6):611–616. https://doi.org/10.1262/jrd.2017-074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johannsen H, Muppala V, Gröschel C, Monecke S, Elsner L, DidiĂ© M, Zimmermann WH, Dressel R (2017) Immunological properties of murine parthenogenetic stem cells and their differentiation products. Front Immunol 8:924. https://doi.org/10.3389/fimmu.2017.00924 (eCollection 2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufman MH, Webb S (1990) Postimplantation development of tetraploid mouse embryos produced by electrofusion. Development 110:1121–1132

    CAS  PubMed  Google Scholar 

  • Kaufman MH, Robertson EJ, Handyside AH, Evans MJ (1983) Establishment of pluripotential cell lines from haploid mouse embryos. J Embryol Exp Morphol 73:249–261

    CAS  PubMed  Google Scholar 

  • Kim NH, Simerly C, Funahashi H, Schatten G, Day BN (1996) Microtubule organization in porcine oocytes during fertilization and parthenogenesis. Biol Reprod 54(6):1397–1404

    Article  CAS  PubMed  Google Scholar 

  • King WA, Xu KP, Sirard MA, Greve T, Leclerc P, Lambert RD, Jacques P (1988) Cytogenetic study of parthenogenetically activated bovine oocytes matured in vivo and in vitro. Gamete Res 20(3):265–274

    Article  CAS  PubMed  Google Scholar 

  • Kitiyanant Y, Saikhun J, Pavasuthipaisit K (2003) Somatic cell nuclear transfer in domestic cat oocytes treated with IGF-I for in vitro maturation. Theriogenology 59(8):1775–1786

    Article  CAS  PubMed  Google Scholar 

  • Kochan J, Nowak A, NiĹĽaĹ„ski W, Prochowska S, MigdaĹ‚ A, MĹ‚odawska W, Partyka A, Witkowski M (2018) Developmental competence of cat (Felis domesticus) oocytes and embryos after parthenogeneticstimulation using different methods. Zygote 1–8. https://doi.org/10.1017/s0967199418000011

    Article  CAS  PubMed  Google Scholar 

  • Kono T, Obata Y, Wu Q, Niwa K, Ono Y, Yamamoto Y, Park ES, Seo JS, Ogawa H (2004) Birth of parthenogenetic mice that can develop to adulthood. Nature 428(6985):860–864

    Article  CAS  PubMed  Google Scholar 

  • Lee SR, Kim JW, Kim BS, Kim MO, Kim SH, Yoo DH, Shin MJ, Lee S, Park YS, Park YB, Ha JH, Ryoo ZY (2007) The parthenogenetic activation of canine oocytes with Ca-EDTA by various culture periods and concentrations. Theriogenology 67(4):698–703 (Epub 2006 Nov 27)

    Article  CAS  PubMed  Google Scholar 

  • Loi P, Ledda S, Fulka J Jr, Cappai P, Moor RM (1998) Development of parthenogenetic and cloned ovine embryos: effect of activation protocols. Biol Reprod 58(5):1177–1187

    Article  CAS  PubMed  Google Scholar 

  • Macháty Z, Funahashi H, Mayes MA, Day BN, Prather RS (1996) Effects of injecting calcium chloride into in vitro-matured porcine oocytes. Biol Reprod 54(2):316–322

    Article  PubMed  Google Scholar 

  • Madan ML, Singla SK, Chauhan MS, Manik RS (1994) In vitro production and transfer of embryos in buffaloes. Theriogenology 41:139–143

    Article  Google Scholar 

  • Mai Q, Yu Y, Li T, Wang L, Chen MJ, Huang SZ, Zhou C, Zhou Q (2007) Derivation of human embryonic stem cell lines from parthenogenetic blastocysts. Cell Res 17(12):1008–1019

    Article  CAS  PubMed  Google Scholar 

  • Mayes MA, Stogsdill PL, Prather RS (1995) Parthenogenic activation of pig oocytes by protein kinase inhibition. Biol Reprod 53(2) 270–275. https://doi.org/10.1095/biolreprod53.2.270

    Article  CAS  PubMed  Google Scholar 

  • MĂ©o SC, Leal CL, Garcia JM (2004) Activation and early parthenogenesis of bovine oocytes treated with ethanol and strontium. Anim Reprod Sci 81(1–2):35–46

    Article  PubMed  Google Scholar 

  • MĂ©o SC, Yamazaki W, Ferreira CR, Perecin F, Saraiva NZ, Leal CL, Garcia JM (2007) Parthenogenetic activation of bovine oocytes using single and combined strontium, ionomycin and 6-dimethylaminopurine treatments. Zygote 15(4):295–306

    Article  PubMed  Google Scholar 

  • Nandi S, Chauhan MS, Plata P (2000) Effect of a corpus luteum in the recovery and developmental potential of buffalo oocytes. Vet Rec 147:580–581

    Article  CAS  PubMed  Google Scholar 

  • Newman-Smith ED, Werb Z (1995) Stem cell defects in parthenogenetic peri-implantation embryos. Development 121(7):2069–2077

    CAS  PubMed  Google Scholar 

  • Nussbaum DJ, Prather RS (1995) Differential effects of protein synthesis inhibitors on porcine oocyte activation. Mol Reprod Dev 41(1):70–75

    Article  CAS  PubMed  Google Scholar 

  • Pincus G, Enzmann EV (1936) The comparative behavior of mammalian eggs in vivo and in vitro. II. The activation of tubal eggs of the rabbit. J Exp Zool 73:195–208

    Article  Google Scholar 

  • Prichard JF, Thibodeaux JK, Pool SH, Blakewood EG, Menezo Y, Godke RA (1992) In-vitro co-culture of early stage caprine embryos with oviduct and uterine epithelial cells. Hum Reprod 7(4):553–557

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran R, Nascimento Dos Santos M, Parker HM, McDaniel CD (2018) Parental sex effect of parthenogenesis on progeny production and performance of Chinese Painted Quail (Coturnix chinensis). Theriogenology 118:96–102. https://doi.org/10.1016/j.theriogenology.2018.05.027 (Epub 2018 Jun 1)

    Article  CAS  PubMed  Google Scholar 

  • Revazova ES, Turovets NA, Kochetkova OD, Kindarova LB, Kuzmichev LN, Janus JD, Pryzhkova MV (2007) Patient-specific stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells 9(3):432–449

    Article  CAS  PubMed  Google Scholar 

  • Ruddock NT, Macháty Z, Cabot RA, Prather RS (2001) Porcine oocyte activation: differing roles of calcium and pH. Mol Reprod Dev 59(2):227–234

    Article  CAS  PubMed  Google Scholar 

  • Ruddock NT, Wilson KJ, Cooney MA, Korfiatis NA, Tecirlioglu RT, French AJ (2004) Analysis of imprinted messenger RNA expression during bovine preimplantation development. Biol Reprod 70(4):1131–1135 (Epub 2003 Dec 10)

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Yoshida M, Miyoshi K (2005) Utility of ultrasound stimulation for activation of pig oocytes matured in vitro. Mol Reprod Dev 72(3):396–403

    Article  CAS  PubMed  Google Scholar 

  • Savage TF, Harper JA (1986) Parthenogenesis in medium white turkeys selected for low and high semen ejaculate volumes. Poult Sci 65(2):401–402

    Article  CAS  PubMed  Google Scholar 

  • Shamsuddin M, Larsson B, Gustafsson H, Rodriguez-Martinez H (1994) A serum-free, cell-free culture system for development of bovine one-cell embryos up to blastocyst stage with improved viability. Theriogenology 41(5):1033–1043

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Gautam SK, Verma V, Singla SK. 2012. Derivation of pluripotent stem cell-like cells from nuclear transferred cloned bubaline (Bubalus bubalis) embryos. Reprod Domest Anim 47(Suppl. 5): 108–109. (Abstract)

    Google Scholar 

  • Sturm KS, Flannery ML, Pedersen RA (1994) Abnormal development of embryonic and extraembryonic cell lineages in parthenogenetic mouse embryos. Dev Dyn 201(1):11–28

    Article  CAS  PubMed  Google Scholar 

  • Suomalainen E (1950) Pathenogenesis in animals. Adv Genet 3:193–253

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Daimon T (2018) First molecular genetic evidence for automictic parthenogenesis in cockroaches. Insect Sci. https://doi.org/10.1111/1744-7917.12572

    Article  PubMed  Google Scholar 

  • Totey SM, Singh G, Taneja M, Pawshe CH, Talwar GP (1992) In vitro maturation, fertilization and development of follicular oocytes from buffalo (Bubalus bubalis). J Reprod Fertil 95(2):597–607

    Article  CAS  PubMed  Google Scholar 

  • Toyokawa K, Harayama H, Miyake M (2005) Exogenous hyaluronic acid enhances porcine parthenogenetic embryo development in vitro possibly mediated by CD44. Theriogenology 64(2):378–392 (Epub 2005 Jan 11)

    Article  CAS  PubMed  Google Scholar 

  • Verma V, Gautam SK, Singh B, Manik RS, Palta P, Singla SK, Goswami SL, Chauhan MS (2007) Isolation and characterization of embryonic stem cell-like cells from in vitro-produced buffalo (Bubalus bubalis) embryos. Mol Reprod Dev 74(4):520–529

    Article  CAS  PubMed  Google Scholar 

  • Vogt G (2018) Annotated bibliography of the parthenogenetic marbled crayfish Procambarus virginalis, a new research model, potent invader and popular pet. Zootaxa 4418(4):301–352. https://doi.org/10.11646/zootaxa.4418.4.1

    Article  PubMed  Google Scholar 

  • Wang ZQ, Kiefer F, Urbánek P, Wagner EF (1997) Generation of completely embryonic stem cell-derived mutant mice using tetraploid blastocyst injection. Mech Dev 62(2):137–145

    Article  CAS  PubMed  Google Scholar 

  • White MJ, Contreras N, Chency J, Webb GC (1977) Cytogenetics of the parthenogenetic grasshopper Warramaba (formerly Moraba) virgo and its bisexual relatives. II. Hybridization studies. Chromosoma 61(2):127–148

    Article  CAS  PubMed  Google Scholar 

  • Witkowska A (1973) Parthenogenetic development of mouse embryos in vivo. II. Postimplantation development. J Embryol Exp Morphol 30(3):547–560 (No abstract available)

    Google Scholar 

  • Xiong XR, Lan DL, Li J, Wang Y, Zhong JC (2015) Sodium butyrate improves the cloned yak embryo viability and corrects gene expression patterns. Zygote 23(1):19–26. https://doi.org/10.1017/S0967199413000245 (Epub 2013 Jun 12)

    Article  CAS  PubMed  Google Scholar 

  • Yadav EN, Karche SD, Goel AK, Jindal SK, Johri DK (2007) Comparative efficacy of different techniques for oocytes recovery from prepubertal goat ovaries. Indian J Anim Sci 77:988–990

    Google Scholar 

  • Yang H, Liu Z, Ma Y, Zhong C, Yin Q, Zhou C, Shi L, Cai Y, Zhao H, Wang H, Tang F, Wang Y, Zhang C, Liu XY, Lai D, Jin Y, Sun Q, Li J (2013) Generation of haploid embryonic stem cells from Macaca fascicularis monkey parthenotes. Cell Res 23(10):1187–1200. https://doi.org/10.1038/cr.2013.93 (Epub 2013 Jul 16)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Liu Y, Liu G, Li X, Jia Y, Sun L, Wang L, Zhou Q, Huang Y (2015) Rapidly generating knockout mice from H19-Igf2 engineered androgenetic haploid embryonic stem cells. Cell Discov 1:15031. https://doi.org/10.1038/celldisc.2015.31 (eCollection 2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong C, Li J (2017) Efficient generation of gene-modified mice by haploid embryonic stem cell-mediated semi-cloned technology. Methods Mol Biol 1498:121–133

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birbal Singh .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, B., Mal, G., Gautam, S.K., Mukesh, M. (2019). Parthenogenesis—A Potential Tool to Reproductive Biotechnology. In: Advances in Animal Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-21309-1_22

Download citation

Publish with us

Policies and ethics