Advertisement

Finding Non-compliances with Declarative Process Constraints Through Semantic Technologies

  • Claudio Di CiccioEmail author
  • Fajar J. Ekaputra
  • Alessio Cecconi
  • Andreas Ekelhart
  • Elmar Kiesling
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 350)

Abstract

Business process compliance checking enables organisations to assess whether their processes fulfil a given set of constraints, such as regulations, laws, or guidelines. Whilst many process analysts still rely on ad-hoc, often handcrafted per-case checks, a variety of constraint languages and approaches have been developed in recent years to provide automated compliance checking. A salient example is Declare, a well-established declarative process specification language based on temporal logics. Declare specifies the behaviour of processes through temporal rules that constrain the execution of tasks. So far, however, automated compliance checking approaches typically report compliance only at the aggregate level, using binary evaluations of constraints on execution traces. Consequently, their results lack granular information on violations and their context, which hampers auditability of process data for analytic and forensic purposes. To address this challenge, we propose a novel approach that leverages semantic technologies for compliance checking. Our approach proceeds in two stages. First, we translate Declare templates into statements in SHACL, a graph-based constraint language. Then, we evaluate the resulting constraints on the graph-based, semantic representation of process execution logs. We demonstrate the feasibility of our approach by testing its implementation on real-world event logs. Finally, we discuss its implications and future research directions.

Keywords

Process mining Compliance checking SHACL RDF SPARQL 

Notes

Acknowledgements

This work was partially funded by the Austrian FFG grant 861213 (CitySPIN), the Austrian FWF/netidee SCIENCE grant P30437-N31 (SEPSES), the EU H2020 programme under MSCA-RISE agreement 645751 (RISE_BPM), the Christian Doppler Research Association, the Austrian Federal Ministry for Digital and Economic Affairs and the National Foundation for Research, Technology and Development.

References

  1. 1.
    van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative workflows: balancing between flexibility and support. Comput. Sci. Res. Dev. 23(2), 99–113 (2009)CrossRefGoogle Scholar
  2. 2.
    van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49851-4CrossRefGoogle Scholar
  3. 3.
    Awad, A., Decker, G., Weske, M.: Efficient compliance checking using BPMN-Q and temporal logic. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 326–341. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85758-7_24CrossRefGoogle Scholar
  4. 4.
    Balduini, M., et al.: Reality mining on micropost streams. Semant. Web 5(5), 341–356 (2014)Google Scholar
  5. 5.
    Becker, J., Delfmann, P., Eggert, M., Schwittay, S.: Generalizability and applicability of model-based business process compliance-checking approaches – a state-of-the-art analysis and research roadmap. Bus. Res. 5(2), 221–247 (2012)CrossRefGoogle Scholar
  6. 6.
    Beheshti, S.-M.-R., Benatallah, B., Motahari-Nezhad, H.R., Sakr, S.: A query language for analyzing business processes execution. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 281–297. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23059-2_22CrossRefGoogle Scholar
  7. 7.
    Burattin, A., Maggi, F.M., Sperduti, A.: Conformance checking based on multi-perspective declarative process models. Expert Syst. Appl. 65, 194–211 (2016)CrossRefGoogle Scholar
  8. 8.
    Calvanese, D., Kalayci, T.E., Montali, M., Santoso, A., van der Aalst, W.: Conceptual schema transformation in ontology-based data access. In: Faron Zucker, C., Ghidini, C., Napoli, A., Toussaint, Y. (eds.) EKAW 2018. LNCS (LNAI), vol. 11313, pp. 50–67. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-03667-6_4CrossRefGoogle Scholar
  9. 9.
    Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploiting inductive logic programming techniques for declarative process mining. In: Jensen, K., van der Aalst, W.M.P. (eds.) Transactions on Petri Nets and Other Models of Concurrency II. LNCS, vol. 5460, pp. 278–295. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00899-3_16CrossRefGoogle Scholar
  10. 10.
    De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on finite traces. In: IJCAI, pp. 854–860 (2013)Google Scholar
  11. 11.
    Debois, S., Hildebrandt, T.T., Laursen, P.H., Ulrik, K.R.: Declarative process mining for DCR graphs. In: SAC, pp. 759–764. ACM (2017)Google Scholar
  12. 12.
    Di Ciccio, C., Maggi, F.M., Montali, M., Mendling, J.: On the relevance of a business constraint to an event log. Inf. Syst. 78, 144–161 (2018)CrossRefGoogle Scholar
  13. 13.
    Di Ciccio, C., Marrella, A., Russo, A.: Knowledge-intensive Processes: characteristics, requirements and analysis of contemporary approaches. J. Data Semantics 4(1), 29–57 (2015)CrossRefGoogle Scholar
  14. 14.
    Di Ciccio, C., Mecella, M.: On the discovery of declarative control flows for artful processes. ACM Trans. Manage. Inf. Syst. 5(4), 24:1–24:37 (2015)Google Scholar
  15. 15.
    Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business Process Management, 2nd edn. Springer, Heidelberg (2018).  https://doi.org/10.1007/978-3-662-56509-4CrossRefGoogle Scholar
  16. 16.
    Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state verification. In: ICSE, pp. 411–420 (1999)Google Scholar
  17. 17.
    Francesconi, E.: Semantic model for legal resources: annotation and reasoning over normative provisions. Semant. Web 7(3), 255–265 (2016)CrossRefGoogle Scholar
  18. 18.
    Governatori, G., Hashmi, M., Lam, H.-P., Villata, S., Palmirani, M.: Semantic business process regulatory compliance checking using LegalRuleML. In: Blomqvist, E., Ciancarini, P., Poggi, F., Vitali, F. (eds.) EKAW 2016. LNCS (LNAI), vol. 10024, pp. 746–761. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49004-5_48CrossRefGoogle Scholar
  19. 19.
    Governatori, G., Hoffmann, J., Sadiq, S., Weber, I.: Detecting regulatory compliance for business process models through semantic annotations. In: Ardagna, D., Mecella, M., Yang, J. (eds.) BPM 2008. LNBIP, vol. 17, pp. 5–17. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00328-8_2CrossRefGoogle Scholar
  20. 20.
    Governatori, G., Rotolo, A.: A conceptually rich model of business process compliance. In: APCCM, pp. 3–12. Australian Computer Society, Inc. (2010)Google Scholar
  21. 21.
    Governatori, G., Shek, S.: Regorous: a business process compliance checker. In: ICAIL, pp. 245–246. ACM (2013)Google Scholar
  22. 22.
    Hashmi, M., Governatori, G.: Norms modeling constructs of business process compliance management frameworks: a conceptual evaluation. Artif. Intell. Law 26(3), 251–305 (2018)CrossRefGoogle Scholar
  23. 23.
    Hashmi, M., Governatori, G., Wynn, M.T.: Normative requirements for business process compliance. In: Davis, J.G., Demirkan, H., Motahari-Nezhad, H.R. (eds.) ASSRI 2013. LNBIP, vol. 177, pp. 100–116. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07950-9_8CrossRefGoogle Scholar
  24. 24.
    Hildebrandt, T., Mukkamala, R.R., Slaats, T.: Nested dynamic condition response graphs. In: Arbab, F., Sirjani, M. (eds.) FSEN 2011. LNCS, vol. 7141, pp. 343–350. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29320-7_23CrossRefGoogle Scholar
  25. 25.
    Kävrestad, J.: Fundamentals of Digital Forensics - Theory, Methods, and Real-Life Applications. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-96319-8CrossRefGoogle Scholar
  26. 26.
    Kuzuno, H., Karam, C.: Blockchain explorer: an analytical process and investigation environment for bitcoin. In: eCrime, pp. 9–16. IEEE (2017)Google Scholar
  27. 27.
    Leida, M., Majeed, B., Colombo, M., Chu, A.: A lightweight RDF data model for business process analysis. In: Cudre-Mauroux, P., Ceravolo, P., Gašević, D. (eds.) SIMPDA 2012. LNBIP, vol. 162, pp. 1–23. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40919-6_1CrossRefGoogle Scholar
  28. 28.
    de Leoni, M., Maggi, F.M., van der Aalst, W.M.: An alignment-based framework to check the conformance of declarative process models and to preprocess event-log data. Inf. Syst. 47, 258–277 (2015)CrossRefGoogle Scholar
  29. 29.
    Letia, I.A., Goron, A.: Model checking as support for inspecting compliance to rules in flexible processes. J. Vis. Lang. Comput. 28, 100–121 (2015)CrossRefGoogle Scholar
  30. 30.
    Gómez-López, M.T., Parody, L., Gasca, R.M., Rinderle-Ma, S.: Prognosing the compliance of declarative business processes using event trace robustness. In: Meersman, R., et al. (eds.) OTM 2014. LNCS, vol. 8841, pp. 327–344. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45563-0_19CrossRefGoogle Scholar
  31. 31.
    Maaradji, A., Dumas, M., Rosa, M.L., Ostovar, A.: Detecting sudden and gradual drifts in business processes from execution traces. IEEE Trans. Knowl. Data Eng. 29(10), 2140–2154 (2017)CrossRefGoogle Scholar
  32. 32.
    Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient discovery of understandable declarative process models from event logs. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 270–285. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31095-9_18CrossRefGoogle Scholar
  33. 33.
    Maggi, F.M., Marrella, A., Capezzuto, G., Cervantes, A.A.: Explaining non-compliance of business process models through automated planning. In: Pahl, C., Vukovic, M., Yin, J., Yu, Q. (eds.) ICSOC 2018. LNCS, vol. 11236, pp. 181–197. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-03596-9_12CrossRefGoogle Scholar
  34. 34.
    Maggi, F.M., Montali, M., Westergaard, M., van der Aalst, W.M.P.: Monitoring business constraints with linear temporal logic: an approach based on colored automata. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 132–147. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23059-2_13CrossRefGoogle Scholar
  35. 35.
    Mannhardt, F., Blinde, D.: Analyzing the trajectories of patients with sepsis using process mining. In: RADAR+EMISA, pp. 72–80. CEUR-ws.org (2017)Google Scholar
  36. 36.
    Pham, T.A., Le Thanh, N.: An ontology-based approach for business process compliance checking. In: IMCOM, pp. 1–6. ACM SIGAPP (2016)Google Scholar
  37. 37.
    Schönig, S., Rogge-Solti, A., Cabanillas, C., Jablonski, S., Mendling, J.: Efficient and customisable declarative process mining with SQL. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 290–305. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39696-5_18CrossRefGoogle Scholar
  38. 38.
    Thao Ly, L., Göser, K., Rinderle-Ma, S., Dadam, P.: Compliance of semantic constraints - a requirements analysis for process management systems. In: GRCIS (2008)Google Scholar
  39. 39.
    Ly, L.T., Rinderle-Ma, S., Dadam, P.: Design and verification of instantiable compliance rule graphs in process-aware information systems. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp. 9–23. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13094-6_3CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Claudio Di Ciccio
    • 2
    Email author
  • Fajar J. Ekaputra
    • 1
  • Alessio Cecconi
    • 2
  • Andreas Ekelhart
    • 1
  • Elmar Kiesling
    • 1
  1. 1.TU WienViennaAustria
  2. 2.WU ViennaViennaAustria

Personalised recommendations