Skip to main content

Using Conceptual Modeling to Support Machine Learning

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 350))

Abstract

With the transformation of our society into a “digital world,” machine learning has emerged as an essential approach to extracting useful information from large collections of data. However, challenges remain for using machine learning effectively. We propose that some of these can be overcome using conceptual modeling. We examine a popular cross-industry standard process for data mining, commonly known as CRISP-DM Directions, and show the potential usefulness of conceptual modeling at each stage of this process. The results are illustrated through an application to a management system for drug monitoring. Doing so demonstrates that conceptual modeling can advance machine learning by: (1) supporting the application of machine learning within organizations; (2) improving the usability of machine learning as decision tools; and (3) optimizing the performance of machine learning algorithms. Based on the CRISP-DM framework, we propose six research directions that should be explored to understand how conceptual modeling can support and extend machine learning.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Davenport, T., Harris, J.: Competing on Analytics: Updated, with a New Introduction: The New Science of Winning. Harvard Business Press, Cambridge (2017)

    Google Scholar 

  2. Khatri, V., Samuel, B.: Analytics for managerial work. Commun. ACM 62, 100–108 (2019)

    Article  Google Scholar 

  3. Forni, A., Meulen, R.: Gartner’s 2016 Hype Cycle for Emerging Technologies Identifies Three Key Trends That Organizations Must Track to Gain Competitive Advantage (2016)

    Google Scholar 

  4. Ransbotham, S., Kiron, D.: Analytics as a source of business innovation. MIT Sloan Manag. Rev. 58, 3–16 (2017)

    Google Scholar 

  5. McAfee, A., Brynjolfsson, E.: Machine, platform, crowd: Harnessing our digital future. WW Norton & Company, New York (2017)

    Google Scholar 

  6. Ransbotham, S., Kiron, D., Prentice, P.K.: Beyond the hype: the hard work behind analytics success. MIT Sloan Manag. Rev. 57, 3–15 (2016)

    Google Scholar 

  7. Mylopoulos, J.: Conceptual modelling and Telos. Conceptual Modeling Databases CASE Integrated View of Information Systems Development, pp. 49–68. Wiley, New York (1992)

    Google Scholar 

  8. Jones, N.: The learning machines. Nature 505, 146 (2014)

    Article  Google Scholar 

  9. Waldrop, M.M.: No drivers required. Nature 518, 20 (2015)

    Article  Google Scholar 

  10. Tsymbal, A., Zillner, S., Huber, M.: Ontology – supported machine learning and decision support in biomedicine. In: Cohen-Boulakia, S., Tannen, V. (eds.) DILS 2007. LNCS, vol. 4544, pp. 156–171. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73255-6_14

    Chapter  Google Scholar 

  11. Zhou, L., Chaovalit, P.: Ontology-supported polarity mining. J. Assoc. Inf. Sci. Technol. 59, 98–110 (2008)

    Article  Google Scholar 

  12. Alonso, O.: Challenges with label quality for supervised learning. J. Data Inf. Qual. JDIQ 6, 2 (2015)

    Google Scholar 

  13. Castelvecchi, D.: Can we open the black box of AI? Nat. News 538, 20 (2016)

    Article  Google Scholar 

  14. Azevedo, C.L., Iacob, M.-E., Almeida, J.P.A., van Sinderen, M., Pires, L.F., Guizzardi, G.: Modeling resources and capabilities in enterprise architecture: a well-founded ontology-based proposal for ArchiMate. Inf. Syst. 54, 235–262 (2015)

    Article  Google Scholar 

  15. Burton-Jones, A., Weber, R.: Building conceptual modeling on the foundation of ontology. In: Computing Handbook: Information Systems and Information Technology, Boca Raton, FL, United States, pp. 15.1–15.24 (2014)

    Google Scholar 

  16. Davies, I., Green, P., Rosemann, M., Indulska, M., Gallo, S.: How do practitioners use conceptual modeling in practice? Data Knowl. Eng. 58, 358–380 (2006)

    Article  Google Scholar 

  17. Mylopoulos, J., Chung, L., Yu, E.: From object-oriented to goal-oriented requirements analysis. Commun. ACM 42, 31–37 (1999)

    Article  Google Scholar 

  18. Pentland, B., Recker, J., Kim, I.: Capturing reality in flight? Empirical tools for strong process theory. In: ICIS 2017, Seoul, South Korea, pp. 1–12 (2017)

    Google Scholar 

  19. Recker, J., Rosemann, M., Green, P., Indulska, M.: Do ontological deficiencies in modeling grammars matter? MIS Q. 35, 57–79 (2011)

    Article  Google Scholar 

  20. Soffer, P., Kaner, M., Wand, Y.: Assigning ontology-based semantics to process models: the case of petri nets. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 16–31. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69534-9_2

    Chapter  Google Scholar 

  21. Taghavi, A., Woo, C.: The role clarity framework to improve requirements gathering. ACM Trans. Manag. Inf. Syst. TMIS 8, 9 (2017)

    Google Scholar 

  22. Aguirre-Urreta, M.I., Marakas, G.M.: Comparing conceptual modeling techniques: a critical review of the EER vs OO empirical literature. ACM SIGMIS Database 39, 9–32 (2008)

    Article  Google Scholar 

  23. Batra, D.: Conceptual data modeling patterns: representation and validation. J. Database Manag. 16, 23 (2008)

    Google Scholar 

  24. Kung, C.H., Solvberg, A.: Activity modeling and behavior modeling. In: Proceedings of the IFIP WG 8.1 Working Conference on Information Systems Design Methodologies: Improving the Practice, pp. 145–171. North-Holland Publishing Co. (1986)

    Google Scholar 

  25. Mylopoulos, J.: Information modeling in the time of the revolution. Inf. Syst. 23, 127–155 (1998)

    Article  Google Scholar 

  26. Rizzi, S.: Conceptual modeling solutions for the data warehouse. Data Wareh. OLAP Concepts Archit. Solut. 1–26 (2007)

    Google Scholar 

  27. Rossi, M., Siau, K.: Information Modeling in the new Millennium. IGI Global, Hershey (2000)

    Book  Google Scholar 

  28. Wand, Y., Weber, R.: Research commentary: Information systems and conceptual modeling - a research agenda. Inf. Syst. Res. 13, 363–376 (2002)

    Article  Google Scholar 

  29. Lukyanenko, R.: Rethinking the role of conceptual modeling in the introductory IS curriculum. In: Thirty Ninth International Conference (ICIS 2018) on Information Systems, San Francisco, CA, USA, pp. 1–9 (2018)

    Google Scholar 

  30. Mark, G., Lyytinen, K., Bergman, M.: Boundary objects in design: an ecological view of design artifacts. J. Assoc. Inf. Syst. 8, 34 (2007)

    Google Scholar 

  31. Jabbari, M., Lukyanenko, R., Recker, J., Samuel, B., Castellanos, A.: Conceptual modeling research: revisiting and updating Wand and Weber’s 2002 research agenda. In: AIS SIGSAND, pp. 1–12 (2018)

    Google Scholar 

  32. Recker, J.C., Indulska, M., Rosemann, M., Green, P.: Do process modelling techniques get better? A comparative ontological analysis of BPMN (2005)

    Google Scholar 

  33. Jackson, J.: Data mining; a conceptual overview. Commun. Assoc. Inf. Syst. 8, 19 (2002)

    Google Scholar 

  34. Turban, E., Sharda, R., Delen, D.: Decision Support and Business Intelligence Systems (required). Google Sch. (2010)

    Google Scholar 

  35. Buczak, A.L., Guven, E.: A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Commun. Surv. Tutor. 18, 1153–1176 (2016)

    Article  Google Scholar 

  36. Monu, K., Woo, C.: Intelligent agents as a modeling paradigm. In: ICIS 2005 Proceedings, p. 15 (2005)

    Google Scholar 

  37. Nalchigar, S., Yu, E.: Conceptual modeling for business analytics: a framework and potential benefits. Presented at the 2017 IEEE 19th Conference on Business Informatics (CBI) (2017)

    Google Scholar 

  38. Ram, S., Liu, J.: A new perspective on semantics of data provenance. Presented at the Proceedings of the First International Conference on Semantic Web in Provenance Management, vol. 526 (2009)

    Google Scholar 

  39. Nelwamondo, F.V., Mohamed, S., Marwala, T.: Missing data: a comparison of neural network and expectation maximization techniques. Curr. Sci. 93, 1514–1521 (2007)

    Google Scholar 

  40. Trujillo, J., Luján-Mora, S.: A UML based approach for modeling ETL processes in data warehouses. Presented at the International Conference on Conceptual Modeling (2003)

    Google Scholar 

  41. Simitsis, A., Vassiliadis, P.: A method for the mapping of conceptual designs to logical blueprints for ETL processes. Decis. Support Syst. 45, 22–40 (2008)

    Article  Google Scholar 

  42. Hall, P., Gill, N.: An Introduction to Machine Learning Interpretability (2018)

    Google Scholar 

  43. Samuel, B.M., Khatri, V., Ramesh, V.: Exploring the effects of extensional versus intentional representations on domain understanding. MIS Q. 42(4), 1187–1209 (2018)

    Google Scholar 

  44. Storey, V.C., Trujillo, J.C., Liddle, S.W.: Research on conceptual modeling: themes, topics, and introduction to the special issue (2015)

    Google Scholar 

  45. Gu, N., Singh, V., London, K.: BIM ecosystem: the coevolution of products, processes, and people. In: Building Information Modeling: BIM in Current and Future Practice, pp. 197–210 (2015)

    Google Scholar 

  46. Parsons, J., Lukyanenko, R., Wiersma, Y.: Easier citizen science is better. Nature 471, 37 (2011)

    Article  Google Scholar 

  47. Lukyanenko, R., Parsons, J., Wiersma, Y., Maddah, M.: Expecting the unexpected: effects of data collection design choices on the quality of crowdsourced user-generated content. MIS Q. 43(2), 634–647 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Lukyanenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lukyanenko, R., Castellanos, A., Parsons, J., Chiarini Tremblay, M., Storey, V.C. (2019). Using Conceptual Modeling to Support Machine Learning. In: Cappiello, C., Ruiz, M. (eds) Information Systems Engineering in Responsible Information Systems. CAiSE 2019. Lecture Notes in Business Information Processing, vol 350. Springer, Cham. https://doi.org/10.1007/978-3-030-21297-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21297-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21296-4

  • Online ISBN: 978-3-030-21297-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics