Skip to main content

Solution Patterns for Machine Learning

  • Conference paper
  • First Online:
Advanced Information Systems Engineering (CAiSE 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11483))

Included in the following conference series:

Abstract

Despite the hype around machine learning (ML), many organizations are struggling to derive business value from ML capabilities. Design patterns have long been used in software engineering to enhance design effectiveness and to speed up the development process. The contribution of this paper is two-fold. First, it introduces solution patterns as an explicit way of representing generic and well-proven ML designs for commonly-known and recurring business analytics problems. Second, it reports on the feasibility, expressiveness, and usefulness of solution patterns for ML, in collaboration with an industry partner. It provides a prototype architecture for supporting the use of solution patterns in real world scenarios. It presents a proof-of-concept implementation of the architecture and illustrates its feasibility. Findings from the collaboration suggest that solution patterns can have a positive impact on ML design and development efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://pandas.pydata.org/.

  2. 2.

    https://www.numpy.org/.

  3. 3.

    https://www.scipy.org/.

  4. 4.

    https://scikit-learn.org/.

References

  1. Amazon SageMaker. http://aws.amazon.com/sagemaker/. Accessed 11 Mar 2018

  2. Azure AI Gallery. http://gallery.azure.ai/. Accessed 11 Oct 2018

  3. Azure Machine Learning Studio. http://azure.microsoft.com/en-us/services/machine-learning-studio/. Accessed 11 Mar 2018

  4. Google Cloud AI products. http://cloud.google.com/products/ai/. Accessed 11 Mar 2018

  5. Ali, R., Dalpiaz, F., Giorgini, P.: A goal-based framework for contextual requirements modeling and analysis. Requirements Eng. 15(4), 439–458 (2010)

    Article  Google Scholar 

  6. Breck, E., Cai, S., Nielsen, E., Salib, M., Sculley, D.: The ML test score: a rubric for ML production readiness and technical debt reduction. In: 2017 IEEE International Conference on Big Data, pp. 1123–1132. IEEE (2017)

    Google Scholar 

  7. Brynjolfsson, E., McAfee, A.: The business of artificial intelligence: what it can –and cannot– do for your organization. Harv. Bus. Rev. 7, 3–11 (2017)

    Google Scholar 

  8. Buschmann, F., Henney, K., Schimdt, D.: Pattern-Oriented Software Architecture, vol. 5. Wiley, Hoboken (2007)

    Google Scholar 

  9. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3), 15 (2009)

    Article  Google Scholar 

  10. Chen, H.-M., Kazman, R., Haziyev, S.: Agile big data analytics for web-based systems: an architecture-centric approach. IEEE Trans. Big Data 2, 234–248 (2016)

    Article  Google Scholar 

  11. Chen, H.-M., Kazman, R., Haziyev, S., Hrytsay, O.: Big data system development: an embedded case study with a global outsourcing firm. In: Proceedings of the First International Workshop on BIG Data Software Engineering, pp. 44–50. IEEE Press (2015)

    Google Scholar 

  12. Davenport, T.H., Ronanki, R.: Artificial intelligence for the real world. Harv. Bus. Rev. 96(1), 108–116 (2018)

    Google Scholar 

  13. Goldstein, M., Uchida, S.: A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data. PloS ONE 11(4), e0152173 (2016)

    Article  Google Scholar 

  14. Han, J., Pei, J., Kamber, M.: Data Mining: Concepts and Techniques. Elsevier, Amsterdam (2011)

    MATH  Google Scholar 

  15. Henke, N., et al.: The Age of Analytics: Competing in a Data-Driven World, vol. 4. McKinsey Global Institute, New York (2016)

    Google Scholar 

  16. Keet, C.M., et al.: The data mining optimization ontology. Web Seman. Sci. Serv. Agents World Wide Web 32, 43–53 (2015)

    Article  Google Scholar 

  17. Kotsiantis, S.B.: Supervised machine learning: a review of classification techniques. Informatica 31, 249–268 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Luca, M., Kleinberg, J., Mullainathan, S.: Algorithms need managers, too. Harv. Bus. Rev. 94(1), 20 (2016)

    Google Scholar 

  19. Nalchigar, S., Yu, E.: Conceptual modeling for business analytics: a framework and potential benefits. In: 19th IEEE Conference on Business Informatics, pp. 369–378 (2017)

    Google Scholar 

  20. Nalchigar, S., Yu, E.: Business-driven data analytics: a conceptual modeling framework. Data Knowl. Eng. 117, 359–372 (2018)

    Article  Google Scholar 

  21. Nalchigar, S., Yu, E.: Designing business analytics solutions: a model-driven approach. Bus. Inf. Syst. Eng. (2018)

    Google Scholar 

  22. Nalchigar, S., Yu, E., Ramani, R.: A conceptual modeling framework for business analytics. In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 35–49. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46397-1_3

    Chapter  Google Scholar 

  23. Ng, A.: What artificial intelligence can and can’t do right now. Harv. Bus. Rev. 9 (2016)

    Google Scholar 

  24. Ransbotham, S., Gerbert, P., Reeves, M., Kiron, D., Spira, M.: Artificial intelligence in business gets real. MIT Sloan Manag. Rev. (2018)

    Google Scholar 

  25. Schreck, B., Kanter, M., Veeramachaneni, K., Vohra, S., Prasad, R.: Getting value from machine learning isn’t about fancier algorithms – it’s about making it easier to use. Harv. Bus. Rev. (2018)

    Google Scholar 

  26. Sculley, D., et al.: Machine learning: the high interest credit card of technical debt. In: SE4ML: Software Engineering for Machine Learning (2014)

    Google Scholar 

  27. Vanschoren, J., Soldatova, L.: Exposé: an ontology for data mining experiments. In: International Workshop on Third Generation Data Mining: Towards Service-Oriented Knowledge Discovery, pp. 31–46 (2010)

    Google Scholar 

  28. Veeramachaneni, K.: Why you’re not getting value from your data science. Harv. Bus. Rev. 12, 1–4 (2016)

    Google Scholar 

  29. Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Netw. 16(3), 645–678 (2005)

    Article  Google Scholar 

  30. Yu, E.: Modelling strategic relationships for process reengineering. Soc. Model. Requirements Eng. 11, 2011 (2011)

    Google Scholar 

  31. Zinkevich, M.: Rules of machine learning: best practices for ML engineering (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soroosh Nalchigar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nalchigar, S., Yu, E., Obeidi, Y., Carbajales, S., Green, J., Chan, A. (2019). Solution Patterns for Machine Learning. In: Giorgini, P., Weber, B. (eds) Advanced Information Systems Engineering. CAiSE 2019. Lecture Notes in Computer Science(), vol 11483. Springer, Cham. https://doi.org/10.1007/978-3-030-21290-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21290-2_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21289-6

  • Online ISBN: 978-3-030-21290-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics