Skip to main content

Efficient Engineering Data Exchange in Multi-disciplinary Systems Engineering

  • Conference paper
  • First Online:
Advanced Information Systems Engineering (CAiSE 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11483))

Included in the following conference series:

Abstract

In the parallel engineering of industrial production systems, domain experts from several disciplines need to exchange data efficiently to prevent the divergence of local engineering models. However, the data synchronization is hard (a) as it may be unclear what data consumers need and (b) due to the heterogeneity of local engineering artifacts. In this paper, we introduce use cases and a process for efficient Engineering Data Exchange (EDEx) that guides the definition and semantic mapping of data elements for exchange and facilitates the frequent synchronization between domain experts. We identify main elements of an EDEx information system to automate the EDEx process. We evaluate the effectiveness and effort of the EDEx process and concepts in a feasibility case study with requirements and data from real-world use cases at a large production system engineering company. The domain experts found the EDEx process more effective and the EDEx operation more efficient than the traditional point-to-point process, and providing insight for advanced analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biffl, S., Eckhart, M., Lüder, A., Müller, T., Rinker, F., Winkler, D.: Data interface for coil car simulation (case study) part I. Technical report CDL-SQI-M2-TR02, TU Wien (2018)

    Google Scholar 

  2. Biffl, S., Eckhart, M., Lüder, A., Müller, T., Rinker, F., Winkler, D.: Data interface for coil car simulation (case study) part II - detailed data and process models. Technical report CDL-SQI-M2-TR03, TU Wien (2018)

    Google Scholar 

  3. Biffl, S., Gerhard, D., Lüder, A.: Introduction to the multi-disciplinary engineering for cyber-physical production systems. In: Biffl, S., Lüder, A., Gerhard, D. (eds.) Multi-Disciplinary Engineering for Cyber-Physical Production Systems, pp. 1–24. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56345-9_1

    Chapter  Google Scholar 

  4. Biffl, S., Lüder, A., Rinker, F., Waltersdorfer, L., Winkler, D.: Introducing engineering data logistics for production systems engineering. Technical report CDL-SQI-2018-10, TU Wien (2018). http://qse.ifs.tuwien.ac.at/wp-content/uploads/CDL-SQI-2018-10.pdf

  5. Biffl, S., Winkler, D., Mordinyi, R., Scheiber, S., Holl, G.: Efficient monitoring of multi-disciplinary engineering constraints with semantic data integration in the multi-model dashboard process. In: Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA), pp. 1–10. IEEE (2014)

    Google Scholar 

  6. Brambilla, M., Cabot, J., Wimmer, M.: Model-driven software engineering in practice. Synth. Lect. Softw. Eng. 1(1), 1–182 (2012)

    Article  Google Scholar 

  7. Calà, A., et al.: Migration from traditional towards cyber-physical production systems. In: 2017 IEEE 15th International Conference on Industrial Informatics (INDIN), pp. 1147–152. IEEE (2017)

    Google Scholar 

  8. Davis, F.D.: A technology acceptance model for empirically testing new end-user information systems: Theory and results. Ph.D. thesis, Massachusetts Institute of Technology (1985)

    Google Scholar 

  9. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions. Addison-Wesley Professional, Boston (2004)

    Google Scholar 

  10. Jimenez-Ramirez, A., Barba, I., Reichert, M., Weber, B., Del Valle, C.: Clinical processes - the Killer application for constraint-based process interactions? In: Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol. 10816, pp. 374–390. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91563-0_23

    Chapter  Google Scholar 

  11. Kovalenko, O., Euzenat, J.: Semantic matching of engineering data structures. Semantic Web Technologies for Intelligent Engineering Applications, pp. 137–157. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41490-4_6

    Chapter  Google Scholar 

  12. Lüder, A., Pauly, J.-L., Kirchheim, K., Rinker, F., Biffl, S.: Migration to AutomationML based tool chains - incrementally overcoming engineering network challenges. In: 5th AutomationML User Conference (2018)

    Google Scholar 

  13. Business Process Model. Notation (BPMN) Version 2.0. omg (2011)

    Google Scholar 

  14. Putze, S., Porzel, R., Savino, G.-L., Malaka, R.: A manageable model for experimental research data: an empirical study in the materials sciences. In: Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol. 10816, pp. 424–439. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91563-0_26

    Chapter  Google Scholar 

  15. Rosemann, M., vom Brocke, J.: The six core elements of business process management. In: vom Brocke, J., Rosemann, M. (eds.) Handbook on Business Process Management 1. IHIS, pp. 105–122. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-642-45100-3_5

    Chapter  Google Scholar 

  16. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in software engineering. Empirical Softw. Eng. 14(2), 131 (2009)

    Article  Google Scholar 

  17. Sabou, M., Ekaputra, F.J., Biffl, S.: Semantic web technologies for data integration in multi-disciplinary engineering. In: Biffl, S., Lüder, A., Gerhard, D. (eds.) Multi-disciplinary Engineering for Cyber-Physical Production Systems, pp. 301–329. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56345-9_12

    Chapter  Google Scholar 

  18. Vogel-Heuser, B., Bauernhansl, T., Ten Hompel, M.: Handbuch industrie 4.0 bd. 4. Allgemeine Grundlagen, vol. 2 (2017)

    Google Scholar 

  19. Wieringa, R.J.: Design Science Methodology for Information Systems and Software Engineering. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43839-8

    Book  Google Scholar 

Download references

Acknowledgment

The financial support by the Christian Doppler Research Association, the Austrian Federal Ministry for Digital & Economic Affairs and the National Foundation for Research, Technology and Development is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Waltersdorfer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Biffl, S., Lüder, A., Rinker, F., Waltersdorfer, L. (2019). Efficient Engineering Data Exchange in Multi-disciplinary Systems Engineering. In: Giorgini, P., Weber, B. (eds) Advanced Information Systems Engineering. CAiSE 2019. Lecture Notes in Computer Science(), vol 11483. Springer, Cham. https://doi.org/10.1007/978-3-030-21290-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21290-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21289-6

  • Online ISBN: 978-3-030-21290-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics