Skip to main content

Arsenic Contamination of Soil in Relation to Water in Northeastern South Africa

  • Chapter
  • First Online:
Arsenic Water Resources Contamination

Part of the book series: Advances in Water Security ((AWS))

Abstract

Little is known about the arsenic contamination of soil in relation to water in South Africa. In fact, there is a gap in knowledge about the topic as far as Africa as a whole is concerned. This chapter addresses the limited information on the presence and threat of arsenic in South Africa’s environment. The focus of this chapter is on soil (and indirectly water) contamination in the former Venda tribal area in northeastern South Africa where for many decades the apartheid government used arsenic-based dip solutions to treat East Coast Fever among cattle. Soil samples taken at 5-m, 20-m and 100-m at a depth of 300-mm from 10 old dip tanks revealed 11 readings above 2.0 mg/kg and 2 readings above 30 mg/kg. We found that these old contaminated dip sites were not rehabilitated and that houses are now being built as close as 50-m from the centers of contamination. It is clear that the problem of arsenic contamination of soil and water in South Africa, a water scarce country, deserve more attention from researchers and the various levels of government.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Higy and Cordey (2011) (Benin); Huntsman-Mapila et al. (2006), and Mladenov et al. (2013) (Botswana); Smedley et al. (2007), Somé et al. (2012), Nzihou et al. (2013), and Ouédraogo and Amyot (2013) (Burkina Faso); Abdel-Moati (1990) (Egypt); Reimann et al. (2003), Rango et al. (2010, 2013), and Dsikowitzky et al. (2013) (Ethiopia); Amonoo-Neizer and Amekor (1993), Smedley (1996), Smedley et al. (1996), Serfor-Armah et al. (2006), Asante et al. (2007), Baumah et al. (2008), Kortatsi et al. (2008a, b), Akabzaa et al. (2009a, b), Rossiter et al. (2010), Akabzaa and Yidana (2012), Bhattacharya et al. (2012), and Kusimi and Kusimi (2012) (Ghana); Pritchard et al. (2007, 2008) and Mkandawire (2008) (Malawi); El Hachimi et al. (2005, 2007) (Morocco); Asubiojo et al. (1997) and Gbadebo (2005) (Nigeria); Dzoma et al. (2010), Ogola et al. (2011), and Akinsoji et al. (2013) (South Africa); Bowell et al. (1995), Taylor et al. (2005), and Kassenga and Mato (2009) (Tanzania); Rezaie-Boroon et al. (2011) (Togo); and Jannalagadda and Nenzou (1996) (Zimbabwe).

  2. 2.

    See footnote 1.

  3. 3.

    See: Animal Diseases Act 35 of 1984, Animal Diseases Regulations as published by Government Notice No. R. 2026 (1984) and amended by Animal Diseases Regulations: Amended, by Government Notice No. R. 865 (2014).

  4. 4.

    More detail on arsenic related geological formations in Northeast South Africa includes the Mount Dowe Group of the Beitbridge Complex; the Nzhelele, Sibasa and Tshifhefhe Formation of the Soutpansberg Group; the Schiel Complex; the Phalaborwa Complex; the Rooiwater Complex, and the Gravelotte Group (Kempster et al. 2007). The location of these formations are closely connected with the South African greenstone belt starting at the border with Swaziland, reaching northwards to the study area and then turns westwards, covering both sides of the Limpopo river towards the Beitbridge linking South Africa and Zimbabwe.

References

  • Abdel-Moati AR (1990) Speciation and behavior of arsenic in the Nile Delta lakes. Water Air Soil Pollut 51(1–2):117–132

    Article  CAS  Google Scholar 

  • Ahoulé DG, Lalanne F, Mendret J, Brosillon S, Maïga AH (2015) Arsenic in African waters: a review. Water Air Soil Pollut 2015:226–3012

    Google Scholar 

  • Akabzaa TM, Yidana SM (2012) An integrated approach to environmental risk assessment of cumulatively impacted drainage basin from mining activities in southwestern Ghana. Environ Earth Sci 65(1):291–312

    Article  CAS  Google Scholar 

  • Akabzaa TM, Banoeng-Yakubo BK, Seyire JS (2009a) Impact of mining activities on water resources in the vicinity of the Obuasi mine. West Afr J Appl Ecol 11(1):1–10

    Google Scholar 

  • Akabzaa TM, Jamieson HE, Jorgenson N, Nyame K (2009b) The combined impact of mine drainage in the Ankobra River Basin, SW Ghana. Mine Water Environ 28(1):50–64

    Article  CAS  Google Scholar 

  • Akinsoji O, Fatoki OS, Ximba BJ, Opeolu BO, Olatunji OS (2013) Assessment of arsenic levels in Guguletu and Langa rivers in Cape Town, South Africa. Int J 8:1334–1340

    CAS  Google Scholar 

  • Amonoo-Neizer EH, Amekor EM (1993) Determination of total arsenic in environmental samples from Kumasi and Obuasi, Ghana. Environ Health Perspect 101(1):46–49

    Article  CAS  Google Scholar 

  • Asante KA, Agusa T, Subramanian A, Biney CA, Tanabe S (2007) Contamination status of arsenic and other trace elements in drinking water and residents from Tarkwa, a historic mining township in Ghana. Chemosphere 66(8):1513–1522

    Article  CAS  Google Scholar 

  • Asubiojo OI, Nkono NA, Ogunsua AO, Oluwole AF, Ward NI, Akanle OA, Spyrou NM (1997) Trace elements in drinking and groundwater samples in Southern Nigeria. Sci Total Environ 208(1):1–8

    Article  CAS  Google Scholar 

  • ATSDR (2000) Toxicological profile for arsenic. Agency for Toxic Substances and Disease Registry, Atlanta

    Google Scholar 

  • Baumah R, Petrusevski B, Schippers J (2008) Presence of arsenic, iron and manganese in groundwater within the gold-belt zone of Ghana. J Water Supply Res Technol 57(7):519–529

    Article  CAS  Google Scholar 

  • Beinart W (2003) The rise of conservation in South Africa: settlers, livestock and environment 1770–1950. Oxford University Press, Cape Town

    Google Scholar 

  • Bhattacharya P, Sracek O, Eldvall B, Asklund R, Barmen G, Jacks G, Koku J, Gustafsson J-E, Singh N, Balfors BB (2012) Hydrogeochemical study on the contamination of water resources in a part of Tarkwa mining area, Western Ghana. J Afr Earth Sci 66–67:72–84

    Article  CAS  Google Scholar 

  • Botes E, Van Heerden E, Littawer D (2007) Hyper-resistance to arsenic in bacteria isolated from antimony mining in South Africa: research in action. S Afr J Sci 103(7–8):279–281

    CAS  Google Scholar 

  • Bowell RJ, Warren A, Minjera HA, Kimaro N (1995) Environmental impact of former gold mining on the Orangi River, Serengeti NP, Tanzania. Biogeochemistry 28(3):131–160

    Article  CAS  Google Scholar 

  • Cranefield PF (1991) Science and empire: East Coast Fever in Rhodesia and the Transvaal. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Davies B (2004) Veterinary pioneers: the story of Allerton Veterinary Laboratory. Natalia 34:62–69

    Google Scholar 

  • Dsikowitzky L, Mengesha M, Dadebo E, de Carvalho CEV, Sindern S (2013) Assessment of heavy metals in water samples and tissues of edible fish species from Awassa and Koka Rift Valley Lakes, Ethiopia. Environ Monit Assess 185(4):3117–3131

    Article  CAS  Google Scholar 

  • Dzoma BM, Moralo RA, Motsei LE, Ndou RV, Bakunzi FR (2010) Preliminary findings on the levels of five heavy metals in water, sediments, grass and various specimens from cattle grazing and watering in potentially heavy metal polluted areas of north west province of South Africa. J Anim Vet Adv 9(24):3026–3033

    Article  CAS  Google Scholar 

  • El Hachimi ML, El Hanbali M, Fekhaoui M, Bouabdli A, EL Founti A, Saïdi N (2005) Impact d’un site minier abandonné sur l’ environnement: cas de la Zeïda (HauteMoulouya, Maroc). Bulletin de l’Institut Scientifique, Rabat 27:93–100

    Google Scholar 

  • El Hachimi ML, El Founti L, Bouadbli A, Saidi N, Fekhoui M, Tassé N (2007) Pb et As dans des eaux alcalines minières: contamination, comportement et risques (mine abandonnée de Zeïda, Maroc). Review des Sciences de l’Eau 20(1):1–13

    Article  Google Scholar 

  • Fatoki OS, Akinsoji OS, Ximba BJ, Olujimi O, Ayanda OS (2013) Arsenic contamination: Africa the missing gap. Asian J Chem 25(16):9263–9268

    Article  CAS  Google Scholar 

  • Fletcher WA (2000) A guide to practical cattle control in Southern Africa. CPD Printers, Sandton

    Google Scholar 

  • Gbadebo AM (2005) Arsenic pollution in aquifers located within limestone areas of Ogun State, Nigeria. In: Natural arsenic in groundwater: proceedings of the Pre-Congress Workshop ‘Natural Arsenic in Groundwater’, 32nd International Geological Congress, Florence, Italy, 18–19 August 2004. CRC Press, London, pp 85–92

    Chapter  Google Scholar 

  • Guha Mazumder DN, Gosh A, Majumdar KK, Gosh N, Saha C, Guha Mazumder RN (2010) Arsenic contamination of ground water and its health impact on population of district, of Nadia, West Bengal, India. Indian J Community Med 35:331–338

    Article  Google Scholar 

  • Hammerbeck ECI (1998) Arsenic. In: The mineral resources of South Africa: handbook 16. Council for Geoscience, Silverton, pp 40–45

    Google Scholar 

  • Higy C, Cordey L (2011) Analyse de la qualité de l’eau de puits transformes. Un exemple d’application au Bénin, pp 1–23

    Google Scholar 

  • Horn AC (1998) Tshwane, Pretoria, Phelindaba: structure-agency interaction and the transformation of a South African region up to 1994, with prospects for the immediate future. Unpublished PhD thesis, supervised by PS Hattingh. University of Pretoria, Pretoria

    Google Scholar 

  • Huntsman-Mapila P, Mapila T, Letshwenyo M, Wolski P, Hemond C (2006) Characterization of arsenic occurrence in the water and sediments of the Okavango Delta, NW Botswana. Appl Geochem 21(8):1376–1391

    Article  CAS  Google Scholar 

  • Jannalagadda SB, Nenzou G (1996) Studies on arsenic rich mine dumps: III. Effect on river water. J Environ Sci Health A 31(10):2547–2555

    Google Scholar 

  • Kassenga GR, Mato RR (2009) Arsenic contamination levels in drinking water sources in mining areas in Lake Victoria Basin, Tanzania, and its removal using stabilized ferralsols. Int J Biol Chem Sci 2(4):389–400

    Google Scholar 

  • Kempster PL, Silberbauer M, Kühn A (2007) Interpretation of drinking water quality guidelines – the case of arsenic. Water SA 33(1):95–100

    CAS  Google Scholar 

  • Kortatsi BK, Asigbe J, Dartey GA, Tay C, Anornu GK, Hayford E (2008a) Reconnaissance survey of arsenic concentration in ground-water in south-eastern Ghana. West Afr J Appl Ecol 13(1):16–26

    Google Scholar 

  • Kortatsi BK, Tay CK, Anornu G, Hayford E, Dartey GA (2008b) Hydrogeochemical evaluation of groundwater in the lower Offin basin, Ghana. Environ Geol 53(8):1651–1662

    Article  CAS  Google Scholar 

  • Korte NE, Fernando Q (1991) A review of arsenic (III) in groundwater. Crit Rev Environ Control 21:1–39

    Article  CAS  Google Scholar 

  • Kusimi JM, Kusimi BA (2012) The hydrochemistry of water resources in selected mining communities in Tarkwa. J Geochem Explor 112:252–261

    Article  CAS  Google Scholar 

  • Linington PA (1949) Native administration in the Union of South Africa. Government Printers, Pretoria

    Google Scholar 

  • Mampane L (2004) Dipping policy. Department of Agriculture, Limpopo Province, Polokwane, Polokwane

    Google Scholar 

  • Mampane L (2011) Limpopo draft cattle dipping policy. Department of Agriculture, Limpopo Province, Polokwane, Polokwane

    Google Scholar 

  • Marole LT (1967) Makhulukutu. Marole Book Depot, Sibasa

    Google Scholar 

  • Mbeki G (1964) The peasants’ revolt. Peguin, Chicago

    Google Scholar 

  • McCarthy TS (2011) The impact of acid mine drainage in South Africa. S Afr J Sci 107(5/6):1–7. Art. #712

    Article  CAS  Google Scholar 

  • McLaren RG, Naidu R, Smith J, Tiller KG (1997) Fractionation and distribution of arsenic in soil contaminated by cattle dip. J Environ Qual 27:348–354

    Article  Google Scholar 

  • Mkandawire T (2008) Quality of groundwater from shallow wells of selected villages in Blantyre District, Malawi. Phys Chem Earth Parts A/B/C 33(8):807–811

    Article  Google Scholar 

  • Mladenov N, Wolski P, Hettiarachchi GM, Murray-Hudson M, Enriquez H, Damaraju S, Masamba W (2013) Abiotic and biotic factors influencing the mobility of arsenic in groundwater of a through-flow island in the Okavango Delta, Botswana. J Hydrol 518:326–341

    Article  CAS  Google Scholar 

  • Mukherjee A, Sengupta MK, Hossain MA, Ahamed S, Das B, Nayak B, Lodh D, Rahman MM, Chakraborti D (2006) Arsenic contaminations in groundwater: a global perspective with emphasis on the Asian scenario. J Health Popul Nutr 24(2):142–163

    Google Scholar 

  • Musingarimi W, Tuffin M, Cowan D (2010) Characterisation of the arsenic resistant genes in Bacillus sp. UWC isolated from maturing fly ash acid mine drainage neutralised solids. S Afr J Sci 106(1/2):1–5. Art. #17

    Article  CAS  Google Scholar 

  • NASA, LC442/05 Ordinance No. 38 (1904) Ordinance to make further provision for preventing the spread of disease amongst cattle known as East Coast Fever. National Archives of South Africa, Pretoria

    Google Scholar 

  • NASA, TAB-A341/15 (n.d.) Native Cattle and East Coast Fever. National Archives of South Africa, Pretoria

    Google Scholar 

  • Nemudzivhadi MH (1985) Zwa Lini na Zwini: Thangela ya Ndavhuko ya History ya Vhavenda. Office of the President, Republic of Venda, Thohoyandou

    Google Scholar 

  • Niyobuhungiro R, Naidoo S, Dalvie A, Von Blottnitz H (2013) Occurrence of CCA-treated timber in caterers’ fuelwood stocks in the Cape Town region. S Afr J Sci 109(1/2):1–5. Art. #1015

    Article  CAS  Google Scholar 

  • Nordstrom DK (2002) Worldwide occurrences of arsenic in ground water. Science (Washington) 296(5576):2143–2145

    Article  CAS  Google Scholar 

  • Norval RAJ (1983) Arguments against intensive dipping in Zimbabwe. Zimb Vet J 14:19–25

    Google Scholar 

  • Norval RAJ, Perry D, Young AS (1992) The epidemology of theilioriosis in Africa. Academic Press, London

    Google Scholar 

  • Nzihou JF, Bouda M, Hamidou S, Diarra J (2013) Arsenic in drinking water toxicological risk assessment in the north region of Burkina Faso. J Water Resour Prot 5:46–52

    Article  CAS  Google Scholar 

  • Ogola JS, Mundalamo HR, Brandl G (2011) Investigation of the origin and distribution of heavy metals around Ebenezer dam, Limpopo province, South Africa. Water SA 37(2):173–179

    Article  CAS  Google Scholar 

  • Ouédraogo O, Amyot M (2013) Mercury, arsenic and selenium concentrations in water and fish from sub-Saharan semi-arid freshwater reservoirs (Burkina Faso). Sci Total Environ 444:243–254

    Article  CAS  Google Scholar 

  • Piracha MA, Ashraf M, Shahzad AM, Siddiqui AR, Nazeer S (2016) Arsenic behaviour in different textured soils amended with phosphate rock and farmyard manure. J Environ Agric 1(1):55–67

    Google Scholar 

  • Pritchard M, Mkandawire T, O’Neil JG (2007) Biological, chemical and drinking water quality from shallow wells in Malawi: case study of Blantyre, Chiradzulu and Mulanje. Phys Chem Earth Parts A/B/C 32(15):1167–1177

    Article  Google Scholar 

  • Pritchard M, Mkandawire T, O’Neil JG (2008) Assessment of groundwater quality in shallow wells within the southern districts of Malawi. Phys Chem Earth Parts A/B/C 33(8):812–823

    Article  Google Scholar 

  • Ramudzuli MR (2014) An evaluation of past cattle dipping practices in the former Venda area of Limpopo Province, South Africa: implications for sustainable development. Unpublished PhD thesis, supervised by AC Horn. University of Pretoria, Pretoria

    Google Scholar 

  • Ramudzuli MR, Horn AC (2014) Arsenic residues in soil at cattle dip tanks in the Vhembe district, Limpopo Province, South Africa. S Afr J Sci 110(7/8):1–7. Art #2013-0393

    Article  CAS  Google Scholar 

  • Rango T, Bianchini G, Beccaluva L, Tassinari R (2010) Geochemistry and water quality assessment of central Main Ethiopian Rift natural waters with emphasis on source and occurrence of fluoride and arsenic. J Afr Earth Sci 57(5):479–491

    Article  CAS  Google Scholar 

  • Rango T, Vengosh A, Dwyer G, Bianchini G (2013) Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers. Water Res 47(15):5801–5818

    Article  CAS  Google Scholar 

  • Reimann C, Bjorvatn K, Frengstad B, Melaku Z, Tekle-Haimanot R, Siewers U (2003) Drinking water quality in the Ethiopian section of the East African Rift Valley I – data and health aspects. Sci Total Environ 311(1):65–80

    Article  CAS  Google Scholar 

  • Rezaie-Boroon MH, Gnandi K, Folly K-M (2011) Presence and distribution of toxic trace elements in water and sediments of the southern Togo rivers watershed, West Africa. Fresenius Environ Bull 20(7):1853–1865

    CAS  Google Scholar 

  • Rossiter H, Owusu PA, Awuah E, MacDonald AM, Schäfer AI (2010) Chemical drinking water quality in Ghana: water costs and scope for advanced treatment. Sci Total Environ 408(11):2378–2386

    Article  CAS  Google Scholar 

  • Roychowdhury T (2010) Groundwater arsenic contamination in one of the 107 arsenic-affected blocks in West Bengal, India: Status, distribution, health effects and factors responsible for arsenic poisoning. Int J Hyg Environ Health 212:414–427

    Article  CAS  Google Scholar 

  • Ryan PB, Scanlon KA, Mackintosh DL (2001) Analysis of dietary intake of selected metals in the NHEXAS-Maryland investigation. Environ Health Perspect 109(2):121–128

    Article  CAS  Google Scholar 

  • Sami K, Druzynski AL (2003) Predicted spatial distribution of naturally occurring arsenic, selenium and uranium in groundwater in South Africa – reconnaissance survey – WRC Report No. 1236/1/03. Water Research Commission, Pretoria

    Google Scholar 

  • Sarkar D, Makris KC, Parra-Noonan MT, Datta R (2007) Effect of soil properties on arsenic fractioning and bioaccessibility in cattle and sheep dipping vats. Environ Int 33:164–169

    Article  CAS  Google Scholar 

  • Serfor-Armah Y, Nyarko BJB, Dampare SB, Adomako D (2006) Levels of arsenic and antimony in water and sediment from Prestea, a gold mining town in Ghana and its environs. Water Air Soil Pollut 175(1):181–192

    Article  CAS  Google Scholar 

  • Singh K (2017) Conceptual framework of a cloud-based decision support system for arsenic health risk assessment. Environ Syst Decis 37(4):435–450

    Google Scholar 

  • Singh SK, Brachfeld SA, Taylor RW (2016) Evaluating hydrogeological and topography controls on groundwater arsenic contamination in the mid-Gangetic plain, Bihar (India): towards developing sustainable arsenic models. In: Fares A (ed) Emerging issues in groundwater resources, advances in water security. Springer, Berlin, pp 263–287

    Chapter  Google Scholar 

  • Smedley PL (1996) Arsenic in rural groundwater in Ghana: special issue; hydrogeochemical studies in sub-Saharan Africa. J Afr Earth Sci 22(4):459–470

    Article  CAS  Google Scholar 

  • Smedley PL, Edmunds WM, Pelig-Ba KB (1996) Mobility of arsenic in groundwater in the Obuasi gold-mining area of Ghana: some implications for human health. Geol Soc Lond, Spec Publ 113(1):163–181

    Article  CAS  Google Scholar 

  • Smedley PL, Knudsen J, Maiga D (2007) Arsenic in groundwater from mineralised Proterozoic basement rocks of Burkina Faso. Appl Geochem 22(5):1074–1092

    Article  CAS  Google Scholar 

  • Smith E, Naidu R, Alston AM (1998) Arsenic in the soil environment: a review. Adv Agron 64:150–195

    Google Scholar 

  • Somé I, Sakira A, Quédraog T, Traoré A, Sondo B, Guissou P (2012) Arsenic levels in tube-wells, water, food, residents’ urine and the prevalence of skin lesions in Yatenga province, Burkina Faso. Interdiscip Toxicol 5(1):38–41

    Article  CAS  Google Scholar 

  • South Africa (1983) Map 7 Rhipicephalus appendiculatus. Department of Agriculture, Technical Service, Pretoria

    Google Scholar 

  • Taylor H, Appleton JD, Lister R, Smith B, Chitamweba D, Mkumbo O, Machiwa JF, Tesha AL, Beinhoff C (2005) Environmental assessment of mercury contamination from the Rwamagasa artisanal gold mining centre, Geita District, Tanzania. Sci Total Environ 343(1):111–113

    Article  CAS  Google Scholar 

  • The Republic of Venda (1979) The Republic of Venda. Chris van Rensburg Publications Ltd, Johannesburg

    Google Scholar 

  • Theiler G (1971) Arnold Theiler 1867–1936: his life and times. University of Pretoria, Pretoria

    Google Scholar 

  • Tomlinson FR (1955) Summary of the report of the Commission for the Socio-Economic Development of the Bantu Areas within the Union of South Africa. Government Printer, Pretoria

    Google Scholar 

  • Turton J (2004) Methods of tick control in cattle. Department of Agriculture, Pretoria

    Google Scholar 

  • UNICEF (2008) Arsenic primer guidance for UNICEF country offices on the investigation and mitigation of arsenic contamination. Water, Environment and Sanitation Section Programme Division. UNICEF, New York

    Google Scholar 

  • USEPA (1999) Guidelines for carcinogen risk assessment. Risk assessment forum, NCEA-F-0644 (revised draft). U.S. Environmental Protection Agency (USEPA), Washington, DC

    Google Scholar 

  • WHO (1981) Arsenic: environmental health criteria. World Health Organization (WHO), Geneva

    Google Scholar 

  • WHO (2000) Arsenic: air quality guidelines, 2nd edn. World Health Organization Regional Office for Europe, Copenhagen

    Google Scholar 

  • WHO (2012) Water sanitation and health – health effects of arsenic in drinking water. World Health Organization, Geneva

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André C. Horn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Horn, A.C., Ramudzuli, M.R. (2020). Arsenic Contamination of Soil in Relation to Water in Northeastern South Africa. In: Fares, A., Singh, S. (eds) Arsenic Water Resources Contamination. Advances in Water Security. Springer, Cham. https://doi.org/10.1007/978-3-030-21258-2_7

Download citation

Publish with us

Policies and ethics