Skip to main content

Stress and Diffusion Assisted Chemical Reaction Front Kinetics in Cylindrical Structures

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 114))

Abstract

Following up on a previous paper in which planar and spherical geometries were discussed we now present a similar analysis of the influence of stress on the diffusion induced velocity of chemical reaction fronts in cylindrical objects. The essential equations of mechanochemistry and stationary diffusion are briefly revisited. Various models for the dependence of the diffusion coefficient on stress are presented, a phenomenological pressure-based one as well as a more advanced tensorial approach. The resulting field equations are solved analytically and the speeds of the reaction fronts predicted by the various diffusion models are compared and discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For an easier understanding the argument is presented in Cartesian coordinates.

References

  1. Aloke, P.: Thermodynamics. Diffusion and the Kirkendall Effect in Solids. Springer, Heidelberg (2014)

    Google Scholar 

  2. Björkman, T., Kurasch, S., Lehtinen, O., Kotakoski, J., Yazyev, O.V., Srivastava, A., Skakalova, V., Smet, J.H., Kaiser, U., Krasheninnikov, A.V.: Defects in bilayer silica and graphene: common trends in diverse hexagonal two-dimensional systems. Sci. Rep. 3482, (2013)

    Google Scholar 

  3. Cui, Z., Gao, F., Qu, J.: A finite deformation stress-dependent chemical potential and its applications to lithium-ion batteries. Mech. Phys. Solids 60, 1280–1295 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  4. Cui, Z., Gao, F., Qu, J.: Interface-reaction controlled diffusion in binary solids with applications to lithiation of silicon in lithium-ion batteries. Mech. Phys. Solids 61(2), 293–310 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  5. De Donder, T.: Thermodynamic Theory of Affinity: A Book of Principles. Oxford University Press, Oxford (1936)

    Google Scholar 

  6. El-Kareh, B.: Fundamentals of Semiconductor Processing Technologies. Kluwer Academic, Boston (1995)

    Book  Google Scholar 

  7. Freidin, A.: Chemical affinity tensor and stress-assist chemical reactions front propagation in solids. In: ASME 2013 International Mechanical Engineering Congress and Exposition, 13–21 November 2013. San Diego, California, USA (2013)

    Google Scholar 

  8. Freidin, A.B.: On a chemical affinity tensor for chemical reactions in deformable solids. Mech. Solids 50(3), 260–285 (2015)

    Article  ADS  Google Scholar 

  9. Freidin, A.B., Korolev, I.K., Vilchevskaya, E.N.: Stress-assist chemical reactions front propagation in deformable solids. Int. J. Eng. Sci. 83, 57–75 (2014)

    Article  MathSciNet  Google Scholar 

  10. Freidin, A.B., Korolev, I.K., Aleshchenko, S.P., Vilchevskaya, E.N.: Chemical affinity tensor and chemical reaction front propagation: theory and FE-simulations. Int. J. Fract. 1–15, (2016)

    Google Scholar 

  11. Freidin, A.B., Morozov, N., Vilchevskaya, E.N., Petrenko, S.: Chemical reactions in spherically symmetric problems of mechanochemistry. Acta Mech. 227(1), 43–56 (2016)

    Article  MathSciNet  Google Scholar 

  12. Gibbs, J.: The Collected Works of J.W. Gibbs, Vol. 1: Thermodynamics. Yale University Press, New Haven (1948)

    Google Scholar 

  13. Glansdorff, P., Prigogine, I.: Thermodynamic Theory of Structure. Stability and Fluctuation. Wiley Interscience, London (1971)

    MATH  Google Scholar 

  14. Grigoreva, P., Vilchevskaya, E.N., Müller, W.H.: Modeling stress-affected chemical reactions in solids–a rational mechanics approach. In: Advances in Mechanics of Microstructured Media and Structures, pp. 157–183. Springer, Berlin (2018)

    Google Scholar 

  15. Hopcroft, M., Nix, W.D., Kenny, T.W.: What is the Young’s modulus of silicon? Microelectromechanical Syst. 19(2), 229 (2010)

    Article  Google Scholar 

  16. Indeitsev, D., Mochalova, Y.: Mechanics of multi-component media with exchange of mass and non-classical supplies. Dyn. Mech. Syst. Var. Mass 557, 165–194 (2014)

    MathSciNet  Google Scholar 

  17. Indeitsev, D.A., Semenov, B.N., Sterlin, M.D.: The phenomenon of localization of diffusion process in a dynamically deformed solid. Dokl. Phys. 57(4), 321–335 (2012)

    Google Scholar 

  18. Kao, D., McVitie, J., Nix, W., Saraswat, K.: Two dimensional silicon oxidation experiment and theory. IEDM Tech. Dig. 275, 388–391 (1985)

    Google Scholar 

  19. Kao, D., McVitie, J., Nix, W., Saraswat, K.: Two dimensional thermal oxidation of silicon. I. Experiments. IEEE Trans. Electron Dev. ED-34, 1008–1017 (1987)

    Google Scholar 

  20. Kao, D., McVitie, J., Nix, W., Saraswat, K.: Two-dimensional thermal oxidation of silicon. II. Modeling stress effects in wet oxides. IEEE Trans. Electron Dev. 35(1), 25–37(1988)

    Article  ADS  Google Scholar 

  21. Knyazeva, A.: Model of medium with diffusion and internal surfaces and some applied problems. Mater. Phys. Mech. 7, 29–36 (2004)

    Google Scholar 

  22. Knyazeva, A.G.: Cross effects in solid media with diffusion. J. Appl. Mech. Tech. Phys. 44(3), 373–384 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  23. Loeffel, K., Lallit, A.: A chemo-thermo-mechanically coupled theory for elastic-viscoplastic deformation, diffusion, and volumetric swelling due to a chemical reaction. Int. J. Plast. 27(9), 1409–1431 (2011)

    Article  Google Scholar 

  24. Prigogine, I., Defay, R.: Chemical Thermodynamics. Longmans, Green, London (1988)

    Google Scholar 

  25. Rusanov, A.: Surface thermodynamics revisited. Surf. Sci. Rep. 58, 111–239 (2005)

    Article  ADS  Google Scholar 

  26. Rusanov, A.I.: Thermodynamic Foundations of Mechanochemistry. Nauka, Saint-Petersburg (2006)

    Google Scholar 

  27. Sutardja, P., Oldham, W.: Modeling of stress effects in silicon oxidation. IEEE Trans. Electron Dev. 36(11), 2415–2421 (1989)

    Article  ADS  Google Scholar 

  28. Toribio, J.: Role of drawing-induced residual stresses and strains in the hydrogen embrittlement susceptibility of prestressing steels. Corros. Sci. 10, 3346–3355 (2011)

    Article  Google Scholar 

  29. Vilchevskaya, E., Freidin, A.: On kinetics of chemical reaction fronts in elastic solids. Surf. Eff. Solid Mech. 105–117, (2013)

    Google Scholar 

  30. Wikipedia: LOCOS (2016). https://en.wikipedia.org/wiki/LOCOS

  31. Yen, J., Hwu, J.G.: Stress effect on the kinetics of silicon thermal oxidation. Appl. Phys. 89(5), 3027–3032 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

Support of this work by a joint grant from the Russian Foundation for Basic Research (18-19-00160) and the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG, MU 1752/47-1) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Polina Grigoreva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grigoreva, P., Vilchevskaya, E.N., Müller, W.H. (2019). Stress and Diffusion Assisted Chemical Reaction Front Kinetics in Cylindrical Structures. In: Altenbach, H., Irschik, H., Matveenko, V. (eds) Contributions to Advanced Dynamics and Continuum Mechanics. Advanced Structured Materials, vol 114. Springer, Cham. https://doi.org/10.1007/978-3-030-21251-3_4

Download citation

Publish with us

Policies and ethics