Advertisement

Co-rotational Formulations for 3D Flexible Multibody Systems: A Nodal-Based Approach

  • Andreas ZwölferEmail author
  • Johannes Gerstmayr
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 114)

Abstract

Rigid body models are only sufficient for rough estimates of the dynamics of real world systems, such as machines, robots and vehicles. Although, deformations are usually small compared to a rigid body motion, they need to be taken into account in many cases; e.g., to determine vibrations, resonance effects and stresses. So far, there are two main approaches to model these so-called flexible multibody systems. Both are based on the idea to decompose the motion of the flexible body into a rigid body motion and a superimposed small deformation. In the traditional approach, i.e., the floating frame of reference formulation, the degrees of freedom of the flexible body are rigid body coordinates and superimposed flexible coordinates, which typically result from a finite element model. In the non-conventional approach, the absolute displacement coordinates are employed as degrees of freedom, which can model both the rigid body motion and flexible deformations. In a previous research, a continuum-mechanics-based derivation and comparison has been presented for both approaches. In the present paper, we consistently derive and compare the two formulations on the semi-discrete nodal level of an underlying finite element model. Despite the novel and concise derivation, the present approach leads to equations that can be implemented easily within program codes and unpleasant evaluations of inertia shape integrals, which are present in the conventional floating frame of reference formulation, become obsolete.

Keywords

Flexible multibody systems Floating frame of reference formulation Absolute coordinate formulation Finite element methods Geometric non-linearity 

References

  1. 1.
    Bampton, M.C.C., Craig Jr., R.R.: Coupling of substructures for dynamic analyses. AIAA J. 6(7), 1313–1319 (1968)ADSCrossRefGoogle Scholar
  2. 2.
    Choi, J., Kim, S.S., Rhim, S.S., Choi, J.H.: Numerical modeling of Journal bearing considering both elastohydrodynamic lubrication and multi-flexible-body dynamics. Int. J. Automot. Technol. 13(2), 255–261 (2012)CrossRefGoogle Scholar
  3. 3.
    Gerstmayr, J.: Computational methods for elasto-plastic multibody systems. In: Belyaev, A., Guran, A. (eds.) Selected Topics in Structronic and Mechatronic Systems. Series on Stability, Vibration and Control of Systems, Series B, vol. 3, Chap. 7, pp. 269–319. World Scientific, New York (2003)Google Scholar
  4. 4.
    Gerstmayr, J.: Strain tensors in the absolute nodal coordinate and the floating frame of reference formulation. Nonlinear Dyn. 34(1), 133–145 (2003)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gerstmayr, J., Ambrósio, J.A.C.: Component mode synthesis with constant mass and stiffness matrices applied to flexible multibody systems. Int. J. Numer. Methods Eng. 73(11), 1518–1546 (2008)CrossRefGoogle Scholar
  6. 6.
    Gerstmayr, J., Schöberl, J.: A 3D finite element method for flexible multibody systems. Multibody Syst. Dyn. 15(4), 305–320 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Humer, A., Naets, F., Desmet, W., Gerstmayr, J.: A generalized component mode synthesis approach for global modal parameterization in flexible multibody dynamics. In: Proceedings of the 3rd Joint International Conference on Multibody System Dynamics (2014)Google Scholar
  8. 8.
    Hurty, W.C.: Dynamic analysis of structural systems using component modes. AIAA J. 3(4), 678–685 (1965)ADSCrossRefGoogle Scholar
  9. 9.
    Irons, B.: Structural eigenvalue problems–elimination of unwanted variables. AIAA J. 3(5), 961–962 (1965)ADSCrossRefGoogle Scholar
  10. 10.
    Irschik, H., Krommer, M., Nader, M., Vetyukov, Y., Garssen, H.: The equations of Lagrange for a continuous deformable body with rigid body degrees of freedom, written in a momentum-based formulation. J. Sound Vib. 335, 269–285 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Lanczos, C.: The Variational Principles of Mechanics. Mathematical Expositions, vol. 4, 3rd edn. University of Toronto Press, Toronto (1966)Google Scholar
  12. 12.
    Lugrís, U., Naya, M.A., Luaces, A., Cuadrado, J.: Efficient calculation of the inertia terms in floating frame of reference formulations for flexible multibody dynamics. Proc. Inst. Mech. Eng. Part K: J. Multi-Body Dyn. 223(2), 147–157 (2009)Google Scholar
  13. 13.
    Macneal, R.H.: A hybrid method of component mode synthesis. Comput. Struct. 1(4), 581–601 (1971)CrossRefGoogle Scholar
  14. 14.
    Orzechowski, G., Matikainen, M.K., Mikkola, A.M.: Inertia forces and shape integrals in the floating frame of reference formulation. Nonlinear Dyn. 88(3), 1953–1968 (2017)CrossRefGoogle Scholar
  15. 15.
    Pechstein, A., Reischl, D., Gerstmayr, J.: A generalized component mode synthesis approach for flexible multibody systems with a constant mass matrix. J. Comput. Nonlinear Dyn. 8(1), 011019/1–011019/10 (2013)CrossRefGoogle Scholar
  16. 16.
    Rubin, S.: Improved component-mode representation for structural dynamic analysis. AIAA J. 13(8), 995–1006 (1975)ADSCrossRefGoogle Scholar
  17. 17.
    Schwertassek, R., Wallrapp, O.: Dynamik flexibler Mehrkörpersysteme. Vieweg, Grundlagen und Fortschritte der Ingenieurwissenschaften (1999)CrossRefGoogle Scholar
  18. 18.
    Shabana, A.A.: Flexible multibody dynamics: review of past and recent developments. Multibody Syst. Dyn. 1(2), 189–222 (1997)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Shabana, A.A.: Dynamics of Multibody Systems, 4th edn. Cambridge University Press, Cambridge (2013)CrossRefGoogle Scholar
  20. 20.
    Shabana, A.A., Wang, G., Kulkarni, S.: Further investigation on the coupling between the reference and elastic displacements in flexible body dynamics. J. Sound Vib. 427, 159–177 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    Sherif, K., Nachbagauer, K.: A detailed derivation of the velocity-dependent inertia forces in the floating frame of reference formulation. J. Comput. Nonlinear Dyn. 9(4), 044501/1–044501/8 (2014)CrossRefGoogle Scholar
  22. 22.
    Simo, J.C., Vu-Quoc, L.: On the dynamics of flexible beams under large overall motions–the plane case: Part I. J. Appl. Mech. 53, 849–863 (1986)ADSCrossRefGoogle Scholar
  23. 23.
    Wasfy, T., Noor, A.: Computational strategies for flexible multibody systems. ASME Appl. Mech. Rev. 56(6), 553–613 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    Winkler, R., Gerstmayr, J.: A projection-based approach for the derivation of the floating frame of reference formulation for multibody systems. Acta Mech. 230(1), 1–29 (2019)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Ziegler, P., Humer, A., Pechstein, A., Gerstmayr, J.: Generalized component mode synthesis for the spatial motion of flexible bodies with large rotations about one axis. ASME J. Comput. Nonlinear Dyn. 11(4), 041018; 10 pp (2016)Google Scholar
  26. 26.
    Zwölfer, A., Gerstmayr, J.: Selection of generalized component modes for modally reduced flexible multibody systems. In: Proceedings of the Fifth Joint International Conference on Multibody System Dynamics (IMSD) (2018)Google Scholar
  27. 27.
    Zwölfer, A., Gerstmayr, J.: Preconditioning strategies for linear dependent generalized component modes in 3D flexible multibody dynamics. Multibody Syst. Dyn. (2019).  https://doi.org/10.1007/s11044-019-09680-6CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MechatronicsUniversity of InnsbruckInnsbruckAustria

Personalised recommendations