A Decision-Tree Analysis of the Relationship between Social Development and Homicide Rates

  • J. Octavio Gutierrez-GarciaEmail author
  • Andrés Gómez de Silva Garza
  • L. Leticia Ramírez-Ramírez
  • Rodrigo Patiño
  • Eduardo Candela
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1001)


Using the minimum list of indicators for measuring the social development proposed by the United Nations, this work identifies cross-national indicators of homicide by analyzing socio-economic profiles of 202 countries. Both a correlation analysis and a decision-tree analysis indicate that countries with a relatively low homicide rate are characterized by a high life expectancy of women at birth and a very low adolescent fertility rate, while countries with a relatively high homicide rate are characterized by a low to medium life expectancy of women at birth, a high women-to-men ratio, and a high women’s share of adults with HIV/AIDS. The significance of this work stems from identifying cross-national indicators of homicide that can be used to assist policymakers in designing public policies aimed at reducing homicide rates by improving social indicators.


Decision trees Decision support systems Homicide studies 



This work has been supported by the Asociación Mexicana de Cultura, A.C.


  1. 1.
    Agency CI: Country comparison: distribution of family income—Gini index (2018)Google Scholar
  2. 2.
    Breyer, F., Hupfeld, S.: On the fairness of early retirement provisions. Ger. Econ. Rev. 11(1), 60–77 (2010)CrossRefGoogle Scholar
  3. 3.
    Cole, J.H., Gramajo, A.M.: Homicide rates in a cross section of countries: evidence and interpretations. Popul. Dev. Rev. 35(4), 749–776 (2010)CrossRefGoogle Scholar
  4. 4.
    Crenshaw, E., Robison, K.: Socio-demographic determinants of economic growth: age-structure, preindustrial heritage and sociolinguistic integration. Soc. Forces 88(5), 2217–2240 (2010)CrossRefGoogle Scholar
  5. 5.
    United Nations Statistics Division: Social indicators (2018)Google Scholar
  6. 6.
    Eisner, M., Nivette, A.: How to reduce the global homicide rate to 2 per 100,000 by 2060. In: The Future of Criminology (2012)Google Scholar
  7. 7.
    Elgar, F.J., Aitken, N.: Income inequality, trust and homicide in 33 countries. Eur. J. Public Heal. 21(2), 241–246 (2011)CrossRefGoogle Scholar
  8. 8.
    Foa, R.: Indices of social development—research applications. Institute for Social Studies, Working Paper Series (2011).
  9. 9.
    Goulas, E., Zervoyianni, A.: Economic growth and crime: does uncertainty matter? Appl. Econ. Lett. 20(5), 420–427 (2013)CrossRefGoogle Scholar
  10. 10.
    United Nations Working Group on International Statistical Programmes and Coordination: Report of the expert group on the statistical implications of recent major United Nations conferences (2018)Google Scholar
  11. 11.
    Kim, A., Oh, K., Jung, J.Y., Kim, B.: Imbalanced classification of manufacturing quality conditions using cost-sensitive decision tree ensembles. Int. J. Comput. Integr. Manuf. 31(8), 701–717 (2017)CrossRefGoogle Scholar
  12. 12.
    Madianos, M.G., Alexiou, A.P., Economou, M.: Suicide, unemployment and other socioeconomic factors: evidence from the economic crisis in Greece. Eur. J. Psychiatry 28(1), 39–49 (2014)CrossRefGoogle Scholar
  13. 13.
    Markov, Z., Russell, I.: An introduction to the WEKA data mining system. ACM SIGCSE Bull. 38(3), 367–368 (2006)CrossRefGoogle Scholar
  14. 14.
    McCall, P.L., Dollar, C.B., Parker, K.F.: The age structure-crime rate relationship: solving a long-standing puzzle. J. Quant. Criminol. 29(2), 167–190 (2013)CrossRefGoogle Scholar
  15. 15.
    Nivette, A.E.: Cross-national predictors of crime: a meta-analysis. Homicide Stud. 15(2), 103–131 (2011)CrossRefGoogle Scholar
  16. 16.
    Nivette, A.E., Eisner, M.: Do legitimate polities have fewer homicides? A cross-national analysis. Homicide Stud. 17(1), 3–26 (2013)CrossRefGoogle Scholar
  17. 17.
    Obregon, J., Kim, A., Jung, J.Y.: DTMiner: a tool for decision making based on historical process data (2013)Google Scholar
  18. 18.
    Ouimet, M.: A world of homicides: the effect of economic development, income inequality, and excess infant mortality on the homicide rate for 165 countries in 2010. Homicide Stud. 16(3), 238–258 (2012)CrossRefGoogle Scholar
  19. 19.
    Portugal, I., Alencar, P., Cowan, D.: The use of machine learning algorithms in recommender systems: a systematic review. Expert Syst. Appl. 97, 205–227 (2018)CrossRefGoogle Scholar
  20. 20.
    Pridemore, W.A.: Poverty matters: a reassessment of the inequality chomicide relationship in cross-national studies. Br. J. Criminol. 51(5), 739–772 (2011)CrossRefGoogle Scholar
  21. 21.
    Stamatel, J.P.: Correlates of national-level homicide variation in post-communist East-Central Europe. Soc. Forces 87(3), 1423–1448 (2009)CrossRefGoogle Scholar
  22. 22.
    Templer, D.I., Rushton, J.P.: IQ, skin color, crime, HIV/AIDS, and income in 50 U.S. states. Intelligence 39(6), 437–442 (2011)CrossRefGoogle Scholar
  23. 23.
    Walsh, A.: Race and crime (2004)Google Scholar
  24. 24.
    Webster, C., Kingston, S.: Poverty and crime (2014)Google Scholar
  25. 25.
    Wilson, M., Daly, M.: Life expectancy, economic inequality, homicide, and reproductive timing in Chicago neighbourhoods. BMJ 314(7089), 1271–1274 (1997)CrossRefGoogle Scholar
  26. 26.
    Liu, X., Li, T., Chen, D.: Differentially private classification with decision tree ensemble. Appl. Soft Comput. 62(1), 807–816 (2018)CrossRefGoogle Scholar
  27. 27.
    Yeo, B., Grant, D.: Predicting service industry performance using decision tree analysis. Int. J. Inf. Manag. 38(1), 288–300 (2018)CrossRefGoogle Scholar
  28. 28.
    Wei, Z., Hao, R.: Demographic structure and economic growth: evidence from China. J. Comp. Econ. 38(4), 472–491 (2010)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Zurada, J.: Comparison of the Performance of Several Data Mining Techniques for Loan-Granting Decisions (2002)Google Scholar
  30. 30.
    United Nations: Homicide counts and rates, time series 2000–2012 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • J. Octavio Gutierrez-Garcia
    • 1
    Email author
  • Andrés Gómez de Silva Garza
    • 1
  • L. Leticia Ramírez-Ramírez
    • 2
  • Rodrigo Patiño
    • 1
  • Eduardo Candela
    • 1
  1. 1.Department of Computer ScienceITAMMexico CityMexico
  2. 2.Department of Probability and StatisticsCentro de Investigación en MatemáticasGuanajuatoMexico

Personalised recommendations