Abstract
In this paper, the high-dimensional sparse linear regression model is considered, where the overall number of variables is larger than the number of observations. Many penalized regularization approaches including LASSO, group LASSO, and Elastic-Net, typically focus on selecting variables with strong effects. This may result in biased prediction, especially when weak signals outnumber strong signals. To solve this problem, we incorporate weak signals in variable selection and estimation. We propose a two-stage procedure, consisting of variable selection and post-selection estimation. The variable selection is done using the LASSO and Elastic-Net penalties to detect weak signals, whereas the post-selection estimation involves by shrinking a post-selection weighted ridge estimator in the direction of a selected candidate subset from the first stage. Monte-Carlo simulation experiment is conducted to evaluate the performance of each estimator in terms of the relative mean squared error. As a particular example, we apply the proposed method to analyze the GDP growth data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Belloni, A., Chernozhukov, V.: Least squares after model selection in high-dimensional sparse models. Bernoulli 19(2), 521–547 (2009)
Gao, X., Ahmed, S.E., Feng, Y.: Post selection shrinkage estimation for high-dimensional data analysis. Appl. Stoch. Models Bus. Ind. 33, 97–120 (2006)
Leng, C., Lin, Y., Wahba, G.: Selection a note on the lasso and related procedures in model selection. Stat. Sin. 16(4), 1273–1284 (2006)
Liu, H., Yu, B.: Asymptotic properties of Lasso+mLS and Lasso+Ridge in sparse high-dimensional linear regression. Electron. J. Stat. 7, 3124–3169 (2006)
Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B 58(1), 267–288 (1996)
Zou, H.: The adaptive Lasso and its oracle properties. J. Am. Stat. Assoc. 101(476), 1418–1429 (2006)
Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B 67(2), 301–320 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Asl, M.N., Bevrani, H., Belaghi, R.A., Ahmed, S.E. (2020). Shrinkage and Sparse Estimation for High-Dimensional Linear Models. In: Xu, J., Ahmed, S., Cooke, F., Duca, G. (eds) Proceedings of the Thirteenth International Conference on Management Science and Engineering Management. ICMSEM 2019. Advances in Intelligent Systems and Computing, vol 1001. Springer, Cham. https://doi.org/10.1007/978-3-030-21248-3_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-21248-3_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-21247-6
Online ISBN: 978-3-030-21248-3
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)