Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 228 Accesses

Abstract

With the one-photon photoassociation measurements complete, we now expand our binding energy measurements to the ground state. An accurate model of the electronic ground state potential is essential for accurate prediction of interspecies Feshbach resonances and can also be used to calculate interspecies scattering lengths. Ab initio calculations of these molecular potentials are challenging and cannot achieve the accuracy required for our purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Rather confusingly, the continuum is not that of the initial collision energies but of \(E_\mathrm{b_{2}}\) due to its much larger energy width.

  2. 2.

    The definition of \(\Omega _\mathrm{BB}\) in Eq. 8.8 is twice that in Ref. [35].

References

  1. van Abeelen FA, Verhaar BJ (1999) Determination of collisional properties of cold Na atoms from analysis of bound-state photoassociation and Feshbach resonance field data. Phys Rev A 59(1):578–584. https://doi.org/10.1103/physreva.59.578

    Article  ADS  Google Scholar 

  2. Abraham ERI, McAlexander WI, Gerton JM, Hulet RG, Côté R, Dalgarno A (1996) Singlet \(s\)-wave scattering lengths of \(^{6}{\rm Li}\) and \(^{7}{\rm Li}\). Phys Rev A 53:R3713–R3715. https://doi.org/10.1103/PhysRevA.53.R3713

    Article  ADS  Google Scholar 

  3. Bergmann K, Theuer H, Shore B (1998) Coherent population transfer among quantum states of atoms and molecules. Rev Mod Phys 70(3):1003. https://doi.org/10.1103/RevModPhys.70.1003

    Article  ADS  Google Scholar 

  4. Bohn JL, Julienne PS (1996) Semianalytic treatment of two-color photoassociation spectroscopy and control of cold atoms. Phys Rev A 54(6):R4637–R4640. https://doi.org/10.1103/physreva.54.r4637

    Article  ADS  Google Scholar 

  5. Brewer RG, Hahn EL (1975) Coherent two-photon processes: transient and steady-state cases. Phys Rev A 11(5):1641–1649. https://doi.org/10.1103/physreva.11.1641

    Article  ADS  Google Scholar 

  6. Brue DA, Hutson JM (2013) Prospects of forming ultracold molecules in \(^{2} \Sigma \) states by magnetoassociation of alkali-metal atoms with Yb. Phys Rev A 87(5):052,709. https://doi.org/10.1103/physreva.87.052709

  7. Cabrera CR, Tanzi L, Sanz J, Naylor B, Thomas P, Cheiney P, Tarruell L (2017) Quantum liquid droplets in a mixture of Bose-Einstein condensates. Science 359(6373):301–304. https://doi.org/10.1126/science.aao5686

    Article  ADS  MathSciNet  Google Scholar 

  8. Cheiney P, Cabrera CR, Sanz J, Naylor B, Tanzi L, Tarruell L (2018) Bright soliton to quantum droplet transition in a mixture of Bose-Einstein condensates. Phys Rev Lett 120(135):301. https://doi.org/10.1103/PhysRevLett.120.135301

  9. Cohen-Tannoudji C (2015) Dark resonances from optical pumping to cold atoms and molecules. Phys Scr 90(8):088,013. https://doi.org/10.1088/0031-8949/90/8/088013

    Article  ADS  Google Scholar 

  10. Debatin M, Takekoshi T, Rameshan R, Reichsöllner L, Ferlaino F, Grimm R, Vexiau R, Bouloufa N, Dulieu O, Nägerl HC (2011) Molecular spectroscopy for ground-state transfer of ultracold RbCs molecules. Phys Chem Chem Phys 13(42):18,926–18,935. https://doi.org/10.1039/C1CP21769K

    Article  Google Scholar 

  11. Dutta S, Pérez-Ríos J, Elliott DS, Chen YP (2017) Two-photon photoassociation spectroscopy of an ultracold heteronuclear molecule. Phys Rev A 95(1):013,405. https://doi.org/10.1103/physreva.95.013405

  12. Martinez de Escobar YN, Mickelson PG, Pellegrini P, Nagel SB, Traverso A, Yan M, Côté R, Killian TC (2008) Two-photon photoassociative spectroscopy of ultracold \(^{88}{\rm Sr}\). Phys Rev A 78(062):708. https://doi.org/10.1103/PhysRevA.78.062708

    Article  Google Scholar 

  13. Fano U (1961) Effects of configuration interaction on intensities and phase shifts. Phys Rev 124(6):1866–1878. https://doi.org/10.1103/physrev.124.1866

    Article  ADS  MATH  Google Scholar 

  14. Fleischhauer M, Imamoglu A, Marangos JP (2005) Electromagnetically induced transparency: optics in coherent media. Rev Mod Phys 77(2):633–673. https://doi.org/10.1103/revmodphys.77.633

    Article  ADS  Google Scholar 

  15. Frye MD, Hutson JM (2014) Collision cross sections for the thermalization of cold gases. Phys Rev A 89(052):705. https://doi.org/10.1103/PhysRevA.89.052705

    Article  Google Scholar 

  16. Gribakin GF, Flambaum VV (1993) Calculation of the scattering length in atomic collisions using the semiclassical approximation. Phys Rev A 48(1):546–553. https://doi.org/10.1103/PhysRevA.48.546

    Article  ADS  Google Scholar 

  17. Gunton W, Semczuk M, Dattani NS, Madison KW (2013) High-resolution photoassociation spectroscopy of the \({}^{6}{\rm Li}_{2} {A}({1}^{1}{\Sigma }_{u}^{+})\) state. Phys Rev A 88(062):510. https://doi.org/10.1103/PhysRevA.88.062510

    Article  Google Scholar 

  18. Guo M, Vexiau R, Zhu B, Lu B, Bouloufa-Maafa N, Dulieu O, Wang D (2017) High resolution molecular spectroscopy for producing ultracold absolute ground-state \(^{23}\)Na\( \, ^{87}\)Rb molecules. Phys Rev A 96(5):052,505. https://doi.org/10.1103/PhysRevA.96.052505

  19. Guttridge A, Frye MD, Yang BC, Hutson JM, Cornish SL (2018) Two-photon photoassociation spectroscopy of csyb: ground-state interaction potential and interspecies scattering lengths. Phys Rev A 98(022):707. https://doi.org/10.1103/PhysRevA.98.022707

    Article  Google Scholar 

  20. Hutson JM (1993) BOUND computer program, version 5. Distributed by collaborative computational project no. 6 of the UK Engineering and Physical Sciences Research Council

    Google Scholar 

  21. Jones KM, Lett PD, Tiesinga E, Julienne PS (1999) Fitting line shapes in photoassociation spectroscopy of ultracold atoms: a useful approximation. Phys Rev A 61(012):501. https://doi.org/10.1103/PhysRevA.61.012501

    Article  Google Scholar 

  22. Kitagawa M, Enomoto K, Kasa K, Takahashi Y, Ciuryło R, Naidon P, Julienne PS (2008) Two-color photoassociation spectroscopy of ytterbium atoms and the precise determinations of \(s\)-wave scattering lengths. Phys Rev A 77(1):012,719. https://doi.org/10.1103/physreva.77.012719

  23. Le Roy RJ (1998) Uncertainty, sensitivity, convergence, and rounding in performing and reporting least-squares fits. J Mol Spectrosc 191(2):223–231. https://doi.org/10.1006/jmsp.1998.7646

    Article  ADS  Google Scholar 

  24. Le Roy RJ, Bernstein RB (1970) Dissociation energy and long-range potential of diatomic molecules from vibrational spacings of higher levels. J Chem Phys 52(8):3869–3879. https://doi.org/10.1063/1.1673585

    Article  ADS  Google Scholar 

  25. Lee KL, Jørgensen NB, Liu IK, Wacker L, Arlt JJ, Proukakis NP (2016) Phase separation and dynamics of two-component Bose-Einstein condensates. Phys Rev A 94(013):602. https://doi.org/10.1103/PhysRevA.94.013602

    Article  Google Scholar 

  26. Liu IK, Pattinson RW, Billam TP, Gardiner SA, Cornish SL, Huang TM, Lin WW, Gou SC, Parker NG, Proukakis NP (2016) Stochastic growth dynamics and composite defects in quenched immiscible binary condensates. Phys Rev A 93(023):628. https://doi.org/10.1103/PhysRevA.93.023628

    Article  Google Scholar 

  27. Lounis B, Cohen-Tannoudji C (1992) Coherent population trapping and Fano profiles. J de Phys II 2(4):579–592. https://doi.org/10.1051/jp2:1992153

    Article  Google Scholar 

  28. Mark MJ, Danzl JG, Haller E, Gustavsson M, Bouloufa N, Dulieu O, Salami H, Bergeman T, Ritsch H, Hart R, Nägerl HC (2009) Dark resonances for ground-state transfer of molecular quantum gases. Appl Phys B 95(2):219–225. https://doi.org/10.1007/s00340-009-3407-1

    Article  ADS  Google Scholar 

  29. Meniailava DN, Shundalau MB (2017) Multi-reference perturbation theory study on the CsYb molecule including the spin-orbit coupling. Comput Theor Chem 1111:20–26. https://doi.org/10.1016/j.comptc.2017.03.046

    Article  Google Scholar 

  30. Moal S, Portier M, Kim J, Dugué J, Rapol UD, Leduc M, Cohen-Tannoudji C (2006) Accurate determination of the scattering length of metastable helium atoms using dark resonances between atoms and exotic molecules. Phys Rev Lett 96(023):203. https://doi.org/10.1103/PhysRevLett.96.023203

  31. Münchow F, Bruni C, Madalinski M, Gorlitz A (2011) Two-photon photoassociation spectroscopy of heteronuclear YbRb. Phys Chem Chem Phys 13(42):18,734. https://doi.org/10.1039/c1cp21219b

    Article  Google Scholar 

  32. Ni KK, Ospelkaus S, de Miranda MHG, Pe’er A, Neyenhuis B, Zirbel JJ, Kotochigova S, Julienne PS, Jin DS, Ye J (2008) A high phase-space-density gas of polar molecules. Science 322(5899):231–235. https://doi.org/10.1126/science.1163861

    Article  ADS  Google Scholar 

  33. Orriols G (1979) Nonabsorption resonances by nonlinear coherent effects in a three-level system. Nuovo Cimento B 53(1):1–24. https://doi.org/10.1007/bf02739299

    Article  ADS  Google Scholar 

  34. Pachomow E, Dahlke VP, Tiemann E, Riehle F, Sterr U (2017) Ground-state properties of \({\rm ca}_{2}\) from narrow-line two-color photoassociation. Phys Rev A 95(043):422. https://doi.org/10.1103/PhysRevA.95.043422

    Article  Google Scholar 

  35. Portier M, Leduc M, Cohen-Tannoudji C (2009) Fano profiles in two-photon photoassociation spectra. Faraday Discuss 142:415. https://doi.org/10.1039/b819470j

    Article  ADS  Google Scholar 

  36. Riboli F, Modugno M (2002) Topology of the ground state of two interacting Bose-Einstein condensates. Phys Rev A 65(6):063,614. https://doi.org/10.1103/PhysRevA.65.063614

  37. Rom T, Best T, Mandel O, Widera A, Greiner M, Hänsch TW, Bloch I (2004) State selective production of molecules in optical lattices. Phys Rev Lett 93(073):002. https://doi.org/10.1103/PhysRevLett.93.073002

  38. Rvachov TM, Son H, Park JJ, Ebadi S, Zwierlein MW, Ketterle W, Jamison AO (2018) Two-photon spectroscopy of the \(^{23}\)Na\(^6\)Li triplet ground state. Phys Chem Chem Phys 20(7):4739–4745. https://doi.org/10.1039/c7cp08481a

    Article  Google Scholar 

  39. Taie S, Takasu Y, Sugawa S, Yamazaki R, Tsujimoto T, Murakami R, Takahashi Y (2010) Realization of a SU (2) \(\times \) SU (6) system of fermions in a cold atomic gas. Phys Rev Lett 105(19):190,401. https://doi.org/10.1103/PhysRevLett.105.190401

  40. Taie S, Watanabe S, Ichinose T, Takahashi Y (2016) Feshbach-resonance-enhanced coherent atom-molecule conversion with ultranarrow photoassociation resonance. Phys Rev Lett 116(043):202. https://doi.org/10.1103/PhysRevLett.116.043202

  41. Tang KT, Toennies JP (1984) An improved simple model for the van der Waals potential based on universal damping functions for the dispersion coefficients. J Chem Phys 80(8):3726–3741. https://doi.org/10.1063/1.447150

    Article  ADS  Google Scholar 

  42. Thakkar AJ, Smith VH (1974) On a representation of the long-range interatomic interaction potential. J Phys B At Mol Phys 7(10):L321. https://doi.org/10.1088/0022-3700/7/10/004

    Article  ADS  Google Scholar 

  43. Tojo S, Taguchi Y, Masuyama Y, Hayashi T, Saito H, Hirano T (2010) Controlling phase separation of binary Bose-Einstein condensates via mixed-spin-channel Feshbach resonance. Phys Rev A 82(033):609. https://doi.org/10.1103/PhysRevA.82.033609

    Article  Google Scholar 

  44. Tsai CC, Freeland RS, Vogels JM, Boesten HMJM, Verhaar BJ, Heinzen DJ (1997) Two-color photoassociation spectroscopy of ground state \({\rm rb}_{2}\). Phys Rev Lett 79:1245–1248. https://doi.org/10.1103/PhysRevLett.79.1245

    Article  ADS  Google Scholar 

  45. Vaidya VD, Tiamsuphat J, Rolston SL, Porto JV (2015) Degenerate Bose-Fermi mixtures of rubidium and ytterbium. Phys Rev A 92(043):604. https://doi.org/10.1103/PhysRevA.92.043604

    Article  Google Scholar 

  46. Vanhaecke N, Lisdat C, T’Jampens B, Comparat D, Crubellier A, Pillet P (2004) Accurate asymptotic ground state potential curves of Cs\(_{2}\) from two-colour photoassociation. Eur Phys J D 28(3):351–360. https://doi.org/10.1140/epjd/e2004-00001-y

    Article  ADS  Google Scholar 

  47. Vitanov NV, Rangelov AA, Shore BW, Bergmann K (2017) Stimulated Raman adiabatic passage in physics, chemistry, and beyond. Rev Mod Phys 89(1):015,006. https://doi.org/10.1103/revmodphys.89.015006

  48. Wang H, Nikolov AN, Ensher JR, Gould PL, Eyler EE, Stwalley WC, Burke JP, Bohn JL, Greene CH, Tiesinga E, Williams CJ, Julienne PS (2000) Ground-state scattering lengths for potassium isotopes determined by double-resonance photoassociative spectroscopy of ultracold \(^{39}\)K. Phys Rev A 62(5):052,704. https://doi.org/10.1103/physreva.62.052704

  49. Weber T, Herbig J, Mark M, Nägerl HC, Grimm R (2003) Three-body recombination at large scattering lengths in an ultracold atomic gas. Phys Rev Lett 91(123):201. https://doi.org/10.1103/PhysRevLett.91.123201

  50. Winkler K, Thalhammer G, Theis M, Ritsch H, Grimm R, Denschlag JH (2005) Atom-molecule dark states in a Bose-Einstein condensate. Phys Rev Lett 95(6):063,202. https://doi.org/10.1103/PhysRevLett.95.063202

  51. Zanon-Willette T, de Clercq E, Arimondo E (2011) Ultrahigh-resolution spectroscopy with atomic or molecular dark resonances: exact steady-state line shapes and asymptotic profiles in the adiabatic pulsed regime. Phys Rev A 84(6):062,502. https://doi.org/10.1103/physreva.84.062502

  52. Zuchowski PS, Hutson JM (2010) Reactions of ultracold alkali-metal dimers. Phys Rev A 81(6):060,703. https://doi.org/10.1103/PhysRevA.81.060703

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Guttridge .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guttridge, A. (2019). Two-Photon Photoassociation. In: Photoassociation of Ultracold CsYb Molecules and Determination of Interspecies Scattering Lengths. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-21201-8_8

Download citation

Publish with us

Policies and ethics