Advertisement

Two-Photon Photoassociation

  • Alexander GuttridgeEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

With the one-photon photoassociation measurements complete, we now expand our binding energy measurements to the ground state. An accurate model of the electronic ground state potential is essential for accurate prediction of interspecies Feshbach resonances and can also be used to calculate interspecies scattering lengths. Ab initio calculations of these molecular potentials are challenging and cannot achieve the accuracy required for our purposes.

References

  1. 1.
    van Abeelen FA, Verhaar BJ (1999) Determination of collisional properties of cold Na atoms from analysis of bound-state photoassociation and Feshbach resonance field data. Phys Rev A 59(1):578–584.  https://doi.org/10.1103/physreva.59.578ADSCrossRefGoogle Scholar
  2. 2.
    Abraham ERI, McAlexander WI, Gerton JM, Hulet RG, Côté R, Dalgarno A (1996) Singlet \(s\)-wave scattering lengths of \(^{6}{\rm Li}\) and \(^{7}{\rm Li}\). Phys Rev A 53:R3713–R3715.  https://doi.org/10.1103/PhysRevA.53.R3713ADSCrossRefGoogle Scholar
  3. 3.
    Bergmann K, Theuer H, Shore B (1998) Coherent population transfer among quantum states of atoms and molecules. Rev Mod Phys 70(3):1003.  https://doi.org/10.1103/RevModPhys.70.1003ADSCrossRefGoogle Scholar
  4. 4.
    Bohn JL, Julienne PS (1996) Semianalytic treatment of two-color photoassociation spectroscopy and control of cold atoms. Phys Rev A 54(6):R4637–R4640.  https://doi.org/10.1103/physreva.54.r4637ADSCrossRefGoogle Scholar
  5. 5.
    Brewer RG, Hahn EL (1975) Coherent two-photon processes: transient and steady-state cases. Phys Rev A 11(5):1641–1649.  https://doi.org/10.1103/physreva.11.1641ADSCrossRefGoogle Scholar
  6. 6.
    Brue DA, Hutson JM (2013) Prospects of forming ultracold molecules in \(^{2} \Sigma \) states by magnetoassociation of alkali-metal atoms with Yb. Phys Rev A 87(5):052,709.  https://doi.org/10.1103/physreva.87.052709
  7. 7.
    Cabrera CR, Tanzi L, Sanz J, Naylor B, Thomas P, Cheiney P, Tarruell L (2017) Quantum liquid droplets in a mixture of Bose-Einstein condensates. Science 359(6373):301–304.  https://doi.org/10.1126/science.aao5686ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Cheiney P, Cabrera CR, Sanz J, Naylor B, Tanzi L, Tarruell L (2018) Bright soliton to quantum droplet transition in a mixture of Bose-Einstein condensates. Phys Rev Lett 120(135):301.  https://doi.org/10.1103/PhysRevLett.120.135301
  9. 9.
    Cohen-Tannoudji C (2015) Dark resonances from optical pumping to cold atoms and molecules. Phys Scr 90(8):088,013.  https://doi.org/10.1088/0031-8949/90/8/088013ADSCrossRefGoogle Scholar
  10. 10.
    Debatin M, Takekoshi T, Rameshan R, Reichsöllner L, Ferlaino F, Grimm R, Vexiau R, Bouloufa N, Dulieu O, Nägerl HC (2011) Molecular spectroscopy for ground-state transfer of ultracold RbCs molecules. Phys Chem Chem Phys 13(42):18,926–18,935.  https://doi.org/10.1039/C1CP21769KCrossRefGoogle Scholar
  11. 11.
    Dutta S, Pérez-Ríos J, Elliott DS, Chen YP (2017) Two-photon photoassociation spectroscopy of an ultracold heteronuclear molecule. Phys Rev A 95(1):013,405.  https://doi.org/10.1103/physreva.95.013405
  12. 12.
    Martinez de Escobar YN, Mickelson PG, Pellegrini P, Nagel SB, Traverso A, Yan M, Côté R, Killian TC (2008) Two-photon photoassociative spectroscopy of ultracold \(^{88}{\rm Sr}\). Phys Rev A 78(062):708.  https://doi.org/10.1103/PhysRevA.78.062708CrossRefGoogle Scholar
  13. 13.
    Fano U (1961) Effects of configuration interaction on intensities and phase shifts. Phys Rev 124(6):1866–1878.  https://doi.org/10.1103/physrev.124.1866ADSCrossRefzbMATHGoogle Scholar
  14. 14.
    Fleischhauer M, Imamoglu A, Marangos JP (2005) Electromagnetically induced transparency: optics in coherent media. Rev Mod Phys 77(2):633–673.  https://doi.org/10.1103/revmodphys.77.633ADSCrossRefGoogle Scholar
  15. 15.
    Frye MD, Hutson JM (2014) Collision cross sections for the thermalization of cold gases. Phys Rev A 89(052):705.  https://doi.org/10.1103/PhysRevA.89.052705CrossRefGoogle Scholar
  16. 16.
    Gribakin GF, Flambaum VV (1993) Calculation of the scattering length in atomic collisions using the semiclassical approximation. Phys Rev A 48(1):546–553.  https://doi.org/10.1103/PhysRevA.48.546ADSCrossRefGoogle Scholar
  17. 17.
    Gunton W, Semczuk M, Dattani NS, Madison KW (2013) High-resolution photoassociation spectroscopy of the \({}^{6}{\rm Li}_{2} {A}({1}^{1}{\Sigma }_{u}^{+})\) state. Phys Rev A 88(062):510.  https://doi.org/10.1103/PhysRevA.88.062510CrossRefGoogle Scholar
  18. 18.
    Guo M, Vexiau R, Zhu B, Lu B, Bouloufa-Maafa N, Dulieu O, Wang D (2017) High resolution molecular spectroscopy for producing ultracold absolute ground-state \(^{23}\)Na\( \, ^{87}\)Rb molecules. Phys Rev A 96(5):052,505.  https://doi.org/10.1103/PhysRevA.96.052505
  19. 19.
    Guttridge A, Frye MD, Yang BC, Hutson JM, Cornish SL (2018) Two-photon photoassociation spectroscopy of csyb: ground-state interaction potential and interspecies scattering lengths. Phys Rev A 98(022):707.  https://doi.org/10.1103/PhysRevA.98.022707CrossRefGoogle Scholar
  20. 20.
    Hutson JM (1993) BOUND computer program, version 5. Distributed by collaborative computational project no. 6 of the UK Engineering and Physical Sciences Research CouncilGoogle Scholar
  21. 21.
    Jones KM, Lett PD, Tiesinga E, Julienne PS (1999) Fitting line shapes in photoassociation spectroscopy of ultracold atoms: a useful approximation. Phys Rev A 61(012):501.  https://doi.org/10.1103/PhysRevA.61.012501CrossRefGoogle Scholar
  22. 22.
    Kitagawa M, Enomoto K, Kasa K, Takahashi Y, Ciuryło R, Naidon P, Julienne PS (2008) Two-color photoassociation spectroscopy of ytterbium atoms and the precise determinations of \(s\)-wave scattering lengths. Phys Rev A 77(1):012,719.  https://doi.org/10.1103/physreva.77.012719
  23. 23.
    Le Roy RJ (1998) Uncertainty, sensitivity, convergence, and rounding in performing and reporting least-squares fits. J Mol Spectrosc 191(2):223–231.  https://doi.org/10.1006/jmsp.1998.7646ADSCrossRefGoogle Scholar
  24. 24.
    Le Roy RJ, Bernstein RB (1970) Dissociation energy and long-range potential of diatomic molecules from vibrational spacings of higher levels. J Chem Phys 52(8):3869–3879.  https://doi.org/10.1063/1.1673585ADSCrossRefGoogle Scholar
  25. 25.
    Lee KL, Jørgensen NB, Liu IK, Wacker L, Arlt JJ, Proukakis NP (2016) Phase separation and dynamics of two-component Bose-Einstein condensates. Phys Rev A 94(013):602.  https://doi.org/10.1103/PhysRevA.94.013602CrossRefGoogle Scholar
  26. 26.
    Liu IK, Pattinson RW, Billam TP, Gardiner SA, Cornish SL, Huang TM, Lin WW, Gou SC, Parker NG, Proukakis NP (2016) Stochastic growth dynamics and composite defects in quenched immiscible binary condensates. Phys Rev A 93(023):628.  https://doi.org/10.1103/PhysRevA.93.023628CrossRefGoogle Scholar
  27. 27.
    Lounis B, Cohen-Tannoudji C (1992) Coherent population trapping and Fano profiles. J de Phys II 2(4):579–592.  https://doi.org/10.1051/jp2:1992153CrossRefGoogle Scholar
  28. 28.
    Mark MJ, Danzl JG, Haller E, Gustavsson M, Bouloufa N, Dulieu O, Salami H, Bergeman T, Ritsch H, Hart R, Nägerl HC (2009) Dark resonances for ground-state transfer of molecular quantum gases. Appl Phys B 95(2):219–225.  https://doi.org/10.1007/s00340-009-3407-1ADSCrossRefGoogle Scholar
  29. 29.
    Meniailava DN, Shundalau MB (2017) Multi-reference perturbation theory study on the CsYb molecule including the spin-orbit coupling. Comput Theor Chem 1111:20–26.  https://doi.org/10.1016/j.comptc.2017.03.046CrossRefGoogle Scholar
  30. 30.
    Moal S, Portier M, Kim J, Dugué J, Rapol UD, Leduc M, Cohen-Tannoudji C (2006) Accurate determination of the scattering length of metastable helium atoms using dark resonances between atoms and exotic molecules. Phys Rev Lett 96(023):203.  https://doi.org/10.1103/PhysRevLett.96.023203
  31. 31.
    Münchow F, Bruni C, Madalinski M, Gorlitz A (2011) Two-photon photoassociation spectroscopy of heteronuclear YbRb. Phys Chem Chem Phys 13(42):18,734.  https://doi.org/10.1039/c1cp21219bCrossRefGoogle Scholar
  32. 32.
    Ni KK, Ospelkaus S, de Miranda MHG, Pe’er A, Neyenhuis B, Zirbel JJ, Kotochigova S, Julienne PS, Jin DS, Ye J (2008) A high phase-space-density gas of polar molecules. Science 322(5899):231–235.  https://doi.org/10.1126/science.1163861ADSCrossRefGoogle Scholar
  33. 33.
    Orriols G (1979) Nonabsorption resonances by nonlinear coherent effects in a three-level system. Nuovo Cimento B 53(1):1–24.  https://doi.org/10.1007/bf02739299ADSCrossRefGoogle Scholar
  34. 34.
    Pachomow E, Dahlke VP, Tiemann E, Riehle F, Sterr U (2017) Ground-state properties of \({\rm ca}_{2}\) from narrow-line two-color photoassociation. Phys Rev A 95(043):422.  https://doi.org/10.1103/PhysRevA.95.043422CrossRefGoogle Scholar
  35. 35.
    Portier M, Leduc M, Cohen-Tannoudji C (2009) Fano profiles in two-photon photoassociation spectra. Faraday Discuss 142:415.  https://doi.org/10.1039/b819470jADSCrossRefGoogle Scholar
  36. 36.
    Riboli F, Modugno M (2002) Topology of the ground state of two interacting Bose-Einstein condensates. Phys Rev A 65(6):063,614.  https://doi.org/10.1103/PhysRevA.65.063614
  37. 37.
    Rom T, Best T, Mandel O, Widera A, Greiner M, Hänsch TW, Bloch I (2004) State selective production of molecules in optical lattices. Phys Rev Lett 93(073):002.  https://doi.org/10.1103/PhysRevLett.93.073002
  38. 38.
    Rvachov TM, Son H, Park JJ, Ebadi S, Zwierlein MW, Ketterle W, Jamison AO (2018) Two-photon spectroscopy of the \(^{23}\)Na\(^6\)Li triplet ground state. Phys Chem Chem Phys 20(7):4739–4745.  https://doi.org/10.1039/c7cp08481aCrossRefGoogle Scholar
  39. 39.
    Taie S, Takasu Y, Sugawa S, Yamazaki R, Tsujimoto T, Murakami R, Takahashi Y (2010) Realization of a SU (2) \(\times \) SU (6) system of fermions in a cold atomic gas. Phys Rev Lett 105(19):190,401.  https://doi.org/10.1103/PhysRevLett.105.190401
  40. 40.
    Taie S, Watanabe S, Ichinose T, Takahashi Y (2016) Feshbach-resonance-enhanced coherent atom-molecule conversion with ultranarrow photoassociation resonance. Phys Rev Lett 116(043):202.  https://doi.org/10.1103/PhysRevLett.116.043202
  41. 41.
    Tang KT, Toennies JP (1984) An improved simple model for the van der Waals potential based on universal damping functions for the dispersion coefficients. J Chem Phys 80(8):3726–3741.  https://doi.org/10.1063/1.447150ADSCrossRefGoogle Scholar
  42. 42.
    Thakkar AJ, Smith VH (1974) On a representation of the long-range interatomic interaction potential. J Phys B At Mol Phys 7(10):L321.  https://doi.org/10.1088/0022-3700/7/10/004ADSCrossRefGoogle Scholar
  43. 43.
    Tojo S, Taguchi Y, Masuyama Y, Hayashi T, Saito H, Hirano T (2010) Controlling phase separation of binary Bose-Einstein condensates via mixed-spin-channel Feshbach resonance. Phys Rev A 82(033):609.  https://doi.org/10.1103/PhysRevA.82.033609CrossRefGoogle Scholar
  44. 44.
    Tsai CC, Freeland RS, Vogels JM, Boesten HMJM, Verhaar BJ, Heinzen DJ (1997) Two-color photoassociation spectroscopy of ground state \({\rm rb}_{2}\). Phys Rev Lett 79:1245–1248.  https://doi.org/10.1103/PhysRevLett.79.1245ADSCrossRefGoogle Scholar
  45. 45.
    Vaidya VD, Tiamsuphat J, Rolston SL, Porto JV (2015) Degenerate Bose-Fermi mixtures of rubidium and ytterbium. Phys Rev A 92(043):604.  https://doi.org/10.1103/PhysRevA.92.043604CrossRefGoogle Scholar
  46. 46.
    Vanhaecke N, Lisdat C, T’Jampens B, Comparat D, Crubellier A, Pillet P (2004) Accurate asymptotic ground state potential curves of Cs\(_{2}\) from two-colour photoassociation. Eur Phys J D 28(3):351–360.  https://doi.org/10.1140/epjd/e2004-00001-yADSCrossRefGoogle Scholar
  47. 47.
    Vitanov NV, Rangelov AA, Shore BW, Bergmann K (2017) Stimulated Raman adiabatic passage in physics, chemistry, and beyond. Rev Mod Phys 89(1):015,006.  https://doi.org/10.1103/revmodphys.89.015006
  48. 48.
    Wang H, Nikolov AN, Ensher JR, Gould PL, Eyler EE, Stwalley WC, Burke JP, Bohn JL, Greene CH, Tiesinga E, Williams CJ, Julienne PS (2000) Ground-state scattering lengths for potassium isotopes determined by double-resonance photoassociative spectroscopy of ultracold \(^{39}\)K. Phys Rev A 62(5):052,704.  https://doi.org/10.1103/physreva.62.052704
  49. 49.
    Weber T, Herbig J, Mark M, Nägerl HC, Grimm R (2003) Three-body recombination at large scattering lengths in an ultracold atomic gas. Phys Rev Lett 91(123):201.  https://doi.org/10.1103/PhysRevLett.91.123201
  50. 50.
    Winkler K, Thalhammer G, Theis M, Ritsch H, Grimm R, Denschlag JH (2005) Atom-molecule dark states in a Bose-Einstein condensate. Phys Rev Lett 95(6):063,202.  https://doi.org/10.1103/PhysRevLett.95.063202
  51. 51.
    Zanon-Willette T, de Clercq E, Arimondo E (2011) Ultrahigh-resolution spectroscopy with atomic or molecular dark resonances: exact steady-state line shapes and asymptotic profiles in the adiabatic pulsed regime. Phys Rev A 84(6):062,502.  https://doi.org/10.1103/physreva.84.062502
  52. 52.
    Zuchowski PS, Hutson JM (2010) Reactions of ultracold alkali-metal dimers. Phys Rev A 81(6):060,703.  https://doi.org/10.1103/PhysRevA.81.060703

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PhysicsDurham UniversityDurhamUK

Personalised recommendations