Advertisement

One-Photon Photoassociation

  • Alexander GuttridgeEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Photoassociation is an important tool in the field of ultracold AMO physics [38]. It extends the fantastic progress of precision spectroscopy in ultracold atoms into the molecular domain. The technique allows precise measurements of molecular potentials useful for characterising atomic interactions and for studies of quantum chemistry [46]. Photoassociation performed in a lattice allows precision spectroscopy of molecular transitions in a Doppler- and recoil-free environment similar to atomic clocks [10, 57]. These molecular clocks are a useful tool for the study of fundamental physics due to their sensitivity to the variation of fundamental constants such as the fine structure constant \(\alpha \) and the proton-electron mass ratio [17, 69, 89].

References

  1. 1.
    Abraham ERI, McAlexander WI, Gerton JM, Hulet RG, Côté R, Dalgarno A (1996) Singlet \(s\)-wave scattering lengths of \(^{6}\rm Li\) and \(^{7}\rm Li\rm \). Phys Rev A 53:R3713–R3715.  https://doi.org/10.1103/PhysRevA.53.R3713ADSCrossRefGoogle Scholar
  2. 2.
    Aikawa K, Akamatsu D, Hayashi M, Oasa K, Kobayashi J, Naidon P, Kishimoto T, Ueda M, Inouye S (2010) Coherent transfer of photoassociated molecules into the rovibrational ground state. Phys Rev Lett 105(20):203,001.  https://doi.org/10.1103/PhysRevLett.105.203001
  3. 3.
    Altaf A, Dutta S, Lorenz J, Pérez-Ríos J, Chen YP, Elliott DS (2015) Formation of ultracold \(^{7}\)Li \(^{85}\)Rb molecules in the lowest triplet electronic state by photoassociation and their detection by ionization spectroscopy. J Chem Phys 142(11):114,310.  https://doi.org/10.1063/1.4914917ADSCrossRefGoogle Scholar
  4. 4.
    Bergeman T, Qi J, Wang D, Huang Y, Pechkis HK, Eyler EE, Gould PL, Stwalley WC, Cline RA, Miller JD, Heinzen DJ (2006) Photoassociation of \(^{85}\rm Rb\) atoms into \(0_{u}^{+}\) states near the 5S+5P atomic limits. J Phys B At Mol Opt Phys 39(19):S813.  https://doi.org/10.1088/0953-4075/39/19/s01ADSCrossRefGoogle Scholar
  5. 5.
    Berninger M, Zenesini A, Huang B, Harm W, Nägerl HC, Ferlaino F, Grimm R, Julienne PS, Hutson JM (2013) Feshbach resonances, weakly bound molecular states, and coupled-channel potentials for cesium at high magnetic fields. Phys Rev A 87(3):032,517.  https://doi.org/10.1103/physreva.87.032517
  6. 6.
    Black ED (2001) An introduction to Pound-Drever-Hall laser frequency stabilization. Am J Phys 69(1):79–87.  https://doi.org/10.1119/1.1286663ADSCrossRefGoogle Scholar
  7. 7.
    Boesten HMJM, Tsai CC, Verhaar BJ, Heinzen DJ (1996) Observation of a shape resonance in cold-atom scattering by pulsed photoassociation. Phys Rev Lett 77(26):5194–5197.  https://doi.org/10.1103/physrevlett.77.5194ADSCrossRefGoogle Scholar
  8. 8.
    Bohn JL, Julienne PS (1999) Semianalytic theory of laser-assisted resonant cold collisions. Phys Rev A 60:414–425.  https://doi.org/10.1103/PhysRevA.60.414ADSCrossRefGoogle Scholar
  9. 9.
    Boisseau C, Audouard E, Vigué J, Julienne PS (2000) Reflection approximation in photoassociation spectroscopy. Phys Rev A 62(052):705.  https://doi.org/10.1103/PhysRevA.62.052705CrossRefGoogle Scholar
  10. 10.
    Borkowski M (2018) Optical lattice clocks with weakly bound molecules. Phys Rev Lett 120(8):083,202.  https://doi.org/10.1103/physrevlett.120.083202
  11. 11.
    Borkowski M, Morzyński P, Ciuryło R, Julienne PS, Yan M, DeSalvo BJ, Killian TC (2014) Mass scaling and nonadiabatic effects in photoassociation spectroscopy of ultracold strontium atoms. Phys Rev A 90(032):713.  https://doi.org/10.1103/PhysRevA.90.032713CrossRefGoogle Scholar
  12. 12.
    Brown JM, Carrington A (2003) Rotational spectroscopy of diatomic molecules. Cambridge University Press.  https://doi.org/10.1017/cbo9780511814808ADSCrossRefGoogle Scholar
  13. 13.
    Brue DA, Hutson JM (2013) Prospects of forming ultracold molecules in \(^{2} \Sigma \) states by magnetoassociation of alkali-metal atoms with Yb. Phys Rev A 87(5):052,709.  https://doi.org/10.1103/physreva.87.052709
  14. 14.
    Bruni C, Görlitz A (2016) Observation of hyperfine interaction in photoassociation spectra of ultracold RbYb. Phys Rev A 94(2):022,503.  https://doi.org/10.1103/physreva.94.022503
  15. 15.
    Carrington A, Pyne CH, Shaw AM, Taylor SM, Hutson JM, Law MM (1996) Microwave spectroscopy and interaction potential of the long-range He\(\cdots \)Kr\(^{+}\) ion: an example of Hund’s case (e). J Chem Phys 105(19):8602–8614.  https://doi.org/10.1063/1.472999ADSCrossRefGoogle Scholar
  16. 16.
    Chin C, Vuletić V, Kerman AJ, Chu S, Tiesinga E, Leo PJ, Williams CJ (2004) Precision Feshbach spectroscopy of ultracold Cs\(_{2}\). Phys Rev A 70(3):032,701.  https://doi.org/10.1103/physreva.70.032701
  17. 17.
    Chin C, Flambaum VV, Kozlov MG (2009) Ultracold molecules: new probes on the variation of fundamental constants. New J Phys 11(5):055,048.  https://doi.org/10.1088/1367-2630/11/5/055048ADSCrossRefGoogle Scholar
  18. 18.
    Chin C, Grimm R, Julienne P, Tiesinga E (2010) Feshbach resonances in ultracold gases. Rev Mod Phys 82(2):1225.  https://doi.org/10.1103/revmodphys.82.1225ADSCrossRefGoogle Scholar
  19. 19.
    Ciamei A, Bayerle A, Chen CC, Pasquiou B, Schreck F (2017) Efficient production of long-lived ultracold \({\rm sr}_{2}\) molecules. Phys Rev A 96(013):406.  https://doi.org/10.1103/PhysRevA.96.013406CrossRefGoogle Scholar
  20. 20.
    Comparat D (2004) Improved LeRoy-Bernstein near-dissociation expansion formula, and prospect for photoassociation spectroscopy. J Chem Phys 120(3):1318–1329.  https://doi.org/10.1063/1.1626539ADSCrossRefGoogle Scholar
  21. 21.
    Comparat D, Drag C, Tolra BL, Fioretti A, Pillet P, Crubellier A, Dulieu O, Masnou-Seeuws F (2000) Formation of cold Cs ground state molecules through photoassociation in the pure long-range state. Eur Phys J D 11(1):59–71.  https://doi.org/10.1007/s100530070105ADSCrossRefGoogle Scholar
  22. 22.
    Danzl JG, Haller E, Gustavsson M, Mark MJ, Hart R, Bouloufa N, Dulieu O, Ritsch H, Nägerl HC (2008) Quantum gas of deeply bound ground state molecules. Science 321(5892):1062–1066.  https://doi.org/10.1126/science.1159909ADSCrossRefGoogle Scholar
  23. 23.
    Danzl JG, Mark MJ, Haller E, Gustavsson M, Hart R, Aldegunde J, Hutson JM, Nägerl HC (2010) An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice. Nat Phys 6(4):265–270.  https://doi.org/10.1038/nphys153CrossRefGoogle Scholar
  24. 24.
    Deiglmayr J, Grochola A, Repp M, Mörtlbauer K, Glück C, Lange J, Dulieu O, Wester R, Weidemüller M (2008) Formation of ultracold polar molecules in the rovibrational ground state. Phys Rev Lett 101(13):133,004.  https://doi.org/10.1103/PhysRevLett.101.133004
  25. 25.
    Dion CM, Drag C, Dulieu O, Laburthe Tolra B, Masnou-Seeuws F, Pillet P (2001) Resonant coupling in the formation of ultracold ground state molecules via photoassociation. Phys Rev Lett 86:2253–2256.  https://doi.org/10.1103/PhysRevLett.86.2253ADSCrossRefGoogle Scholar
  26. 26.
    Drever RWP, Hall JL, Kowalski FV, Hough J, Ford GM, Munley AJ, Ward H (1983) Laser phase and frequency stabilization using an optical resonator. Appl Phys B 31(2):97–105.  https://doi.org/10.1007/BF00702605ADSCrossRefGoogle Scholar
  27. 27.
    Fioretti A, Comparat D, Crubellier A, Dulieu O, Masnou-Seeuws F, Pillet P (1998) Formation of cold \(\rm Cs_{2}\) molecules through photoassociation. Phys Rev Lett 80(20):4402.  https://doi.org/10.1063/1.1302653ADSCrossRefGoogle Scholar
  28. 28.
    Fioretti A, Comparat D, Drag C, Amiot C, Dulieu O, Masnou-Seeuws F, Pillet P (1999) Photoassociative spectroscopy of the Cs\(_{2} \, \, 0^{-}_{g}\) long-range state. Eur Phys J D 5(3):389–403.  https://doi.org/10.1007/s100530050271ADSCrossRefGoogle Scholar
  29. 29.
    Foreman-Mackey D, Hogg DW, Lang D, Goodman J (2013) Emcee: the MCMC hammer. Publ Astron Soc Pac 125(925):306–312.  https://doi.org/10.1086/670067ADSCrossRefGoogle Scholar
  30. 30.
    Fukuhara T, Sugawa S, Takahashi Y (2007) Bose-Einstein condensation of an ytterbium isotope. Phys Rev A 76(5):051,604.  https://doi.org/10.1103/PhysRevA.76.051604
  31. 31.
    Fukuhara T, Takasu Y, Kumakura M, Takahashi Y (2007) Degenerate Fermi gases of ytterbium. Phys Rev Lett 98(3):030,401.  https://doi.org/10.1103/PhysRevLett.98.030401
  32. 32.
    Gardner JR, Cline RA, Miller JD, Heinzen DJ, Boesten HMJM, Verhaar BJ (1995) Collisions of doubly spin-polarized, ultracold \(^{85}\rm Rb\) atoms. Phys Rev Lett 74(19):3764–3767.  https://doi.org/10.1103/physrevlett.74.3764ADSCrossRefGoogle Scholar
  33. 33.
    Goodman J, Weare J (2010) Ensemble samplers with affine invariance. Commun Appl Math Comput Sci 5(1):65–80.  https://doi.org/10.2140/camcos.2010.5.65MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Gregory PD, Molony PK, Köppinger MP, Kumar A, Ji Z, Lu B, Marchant AL, Cornish SL (2015) A simple, versatile laser system for the creation of ultracold ground state molecules. New J Phys 17(5):055,006.  https://doi.org/10.1088/1367-2630/17/5/055006ADSCrossRefGoogle Scholar
  35. 35.
    Guttridge A, Hopkins SA, Frye MD, McFerran JJ, Hutson JM, Cornish SL (2018) Production of ultracold \({\rm cs\mathit{}^{*}\rm Yb}\) molecules by photoassociation. Phys Rev A 97(063):414.  https://doi.org/10.1103/PhysRevA.97.063414CrossRefGoogle Scholar
  36. 36.
    Herzberg G (1989) Molecular spectra and molecular structure: spectra of diatomic molecules. Van Nostrand, New YorkGoogle Scholar
  37. 37.
    Hughes IG, Hase TPA (2010) Measurements and their uncertainties. Oxford University PressGoogle Scholar
  38. 38.
    Jones KM, Tiesinga E, Lett PD, Julienne PS (2006) Ultracold photoassociation spectroscopy: long-range molecules and atomic scattering. Rev Mod Phys 78(2):483–535.  https://doi.org/10.1103/revmodphys.78.483ADSCrossRefGoogle Scholar
  39. 39.
    Julienne P (1996) Cold binary atomic collisions in a light field. J Res Nat Inst Stand Technol 101(4):487.  https://doi.org/10.6028/jres.101.050CrossRefGoogle Scholar
  40. 40.
    Julienne PS, Suominen KA, Band Y (1994) Complex-potential model of collisions of laser-cooled atoms. Phys Rev A 49(5):3890–3896.  https://doi.org/10.1103/physreva.49.3890ADSCrossRefGoogle Scholar
  41. 41.
    Junker M, Dries D, Welford C, Hitchcock J, Chen YP, Hulet RG (2008) Photoassociation of a Bose-Einstein condensate near a Feshbach resonance. Phys Rev Lett 101(6):060,406.  https://doi.org/10.1103/physrevlett.101.060406
  42. 42.
    Kerman AJ, Sage JM, Sainis S, Bergeman T, DeMille D (2004) Production of ultracold polar RbCs\(^{\ast }\) molecules via photoassociation. Phys Rev Lett 92(3):033,004.  https://doi.org/10.1103/physrevlett.92.033004
  43. 43.
    Kitagawa M, Enomoto K, Kasa K, Takahashi Y, Ciuryło R, Naidon P, Julienne PS (2008) Two-color photoassociation spectroscopy of ytterbium atoms and the precise determinations of \(s\)-wave scattering lengths. Phys Rev A 77(1):012,719.  https://doi.org/10.1103/physreva.77.012719
  44. 44.
    Köppinger M (2014) Creation of ultracold RbCs molecules. PhD thesis, Durham UniversityGoogle Scholar
  45. 45.
    Kraft SD, Mudrich M, Staudt MU, Lange J, Dulieu O, Wester R, Weidemüller M (2005) Saturation of Cs\(_{2}\) photoassociation in an optical dipole trap. Phys Rev A 71(1).  https://doi.org/10.1103/physreva.71.013417
  46. 46.
    Krems RV (2008) Cold controlled chemistry. Phys Chem Chem Phys 10(28):4079–4092.  https://doi.org/10.1039/B802322KCrossRefGoogle Scholar
  47. 47.
    Krzyzewski SP, Akin TG, Dizikes J, Morrison MA, Abraham ERI (2015) Observation of deeply bound \(^{85}\rm Rb_{2}\) vibrational levels using Feshbach optimized photoassociation. Phys Rev A 92(6):062,714.  https://doi.org/10.1103/physreva.92.062714
  48. 48.
    Le Roy RJ, Bernstein RB (1970) Dissociation energy and long-range potential of diatomic molecules from vibrational spacings of higher levels. J Chem Phys 52(8):3869–3879.  https://doi.org/10.1063/1.1673585ADSCrossRefGoogle Scholar
  49. 49.
    Legaie R, Picken CJ, Pritchard JD (2018) Sub-kilohertz excitation lasers for quantum information processing with rydberg atoms. J Opt Soc Am B 35(4):892–898.  https://doi.org/10.1364/JOSAB.35.000892ADSCrossRefGoogle Scholar
  50. 50.
    Lett PD, Julienne PS, Phillips WD (1995) Photoassociative spectroscopy of laser-cooled atoms. Annu Rev Phys Chem 46(1):423–452.  https://doi.org/10.1146/annurev.pc.46.100195.002231ADSCrossRefGoogle Scholar
  51. 51.
    Li P, Liu W, Wu J, Ma J, Fan Q, Xiao L, Sun W, Jia S (2017) New observation and analysis of the ultracold Cs\(_{2}\)\(0_{u}^{+}\) and \(1_{g}\) long-range states at the asymptote 6S\(_{1/2}\)+6P\(_{1/2}\). J Quant Spectrosc Radiat Transfer 196:176–181.  https://doi.org/10.1016/j.jqsrt.2017.04.014ADSCrossRefGoogle Scholar
  52. 52.
    Lignier H, Fioretti A, Horchani R, Drag C, Bouloufa N, Allegrini M, Dulieu O, Pruvost L, Pillet P, Comparat D (2011) Deeply bound cold caesium molecules formed after \(0^{-}_{g}\) resonant coupling. Phys Chem Chem Phys 13(42):18,910.  https://doi.org/10.1039/c1cp21488hCrossRefGoogle Scholar
  53. 53.
    Lisdat C, Vanhaecke N, Comparat D, Pillet P (2002) Line shape analysis of two-colour photoassociation spectra on the example of the Cs ground state. Eur Phys J D 21(3):299–309.  https://doi.org/10.1140/epjd/e2002-00209-9ADSCrossRefGoogle Scholar
  54. 54.
    Liu W, Xu R, Wu J, Yang J, Lukashov SS, Sovkov VB, Dai X, Ma J, Xiao L, Jia S (2015) Observation and deperturbation of near-dissociation ro-vibrational structure of the Cs\(_{2}\) state \(0_{u}^{+} \left(a ^{1}{\Sigma }_{u}^{+} \sim b ^{3}{\Pi }_{u}\right)\) at the asymptote 6S\(_{1/2}\)+6P\(_{1/2}\). J Chem Phys 143(12):124,307.  https://doi.org/10.1063/1.4931646ADSCrossRefGoogle Scholar
  55. 55.
    Ma J, Liu W, Yang J, Wu J, Sun W, Ivanov VS, Skublov AS, Sovkov VB, Dai X, Jia S (2014) New observation and combined analysis of the \(\rm Cs_{2} \, 0_{g}^{-}, 0_{u}^{+}\), and \(1_{g}\) states at the asymptotes 6S\(_{1/2}\)+6P\(_{1/2}\) and 6S\(_{1/2}\)+6P\(_{3/2}\). J Chem Phys 141(24):244,310.  https://doi.org/10.1063/1.4904265ADSCrossRefGoogle Scholar
  56. 56.
    Masnou-Seeuws F, Pillet P (2001) Formation of ultracold molecules (\({\rm T}\le 200\,\upmu \)K) via photoassociation in a gas of laser-cooled atoms. Adv At Mol Opt Phy 47:53–127.  https://doi.org/10.1016/s1049-250x(01)80055-0Google Scholar
  57. 57.
    McGuyer BH, McDonald M, Iwata GZ, Tarallo MG, Grier AT, Apfelbeck F, Zelevinsky T (2015) High-precision spectroscopy of ultracold molecules in an optical lattice. New J Phys 17(5):055,004.  https://doi.org/10.1088/1367-2630/17/5/055004ADSCrossRefGoogle Scholar
  58. 58.
    Meniailava DN, Shundalau MB (2017) Multi-reference perturbation theory study on the CsYb molecule including the spin-orbit coupling. Comput Theor Chem 1111:20–26.  https://doi.org/10.1016/j.comptc.2017.03.046CrossRefGoogle Scholar
  59. 59.
    Mickelson PG, Martinez YN, Saenz AD, Nagel SB, Chen YC, Killian TC, Pellegrini P, Côté R (2005) Spectroscopic determination of the \(s\)-wave scattering lengths of \(^{86}\)Sr and \(^{88}\)Sr. Phys Rev Lett 95(22).  https://doi.org/10.1103/physrevlett.95.223002
  60. 60.
    Mulliken RS (1930) The interpretation of band spectra. Parts I, IIa, IIb. Rev Mod Phys 2(1):60–115.  https://doi.org/10.1103/revmodphys.2.60ADSCrossRefGoogle Scholar
  61. 61.
    Münchow F, Bruni C, Madalinski M, Gorlitz A (2011) Two-photon photoassociation spectroscopy of heteronuclear YbRb. Phys Chem Chem Phys 13(42):18,734.  https://doi.org/10.1039/c1cp21219bCrossRefGoogle Scholar
  62. 62.
    Nemitz N, Baumer F, Münchow F, Tassy S, Görlitz A (2009) Production of heteronuclear molecules in an electronically excited state by photoassociation in a mixture of ultracold Yb and Rb. Phys Rev A 79(6):061,403.  https://doi.org/10.1103/PhysRevA.79.061403
  63. 63.
    Pellegrini P, Gacesa M, Côté R (2008) Giant formation rates of ultracold molecules via Feshbach-optimized photoassociation. Phys Rev Lett 101(5):053,201.  https://doi.org/10.1103/physrevlett.101.053201
  64. 64.
    Pichler M, Chen H, Stwalley WC (2004) Photoassociation spectroscopy of ultracold Cs below the 6P\(_{1/2}\) limit. J Chem Phys 121(4):1796–1801.  https://doi.org/10.1063/1.1767071ADSCrossRefGoogle Scholar
  65. 65.
    Pichler M, Chen H, Stwalley WC (2004) Photoassociation spectroscopy of ultracold Cs below the 6P\(_{3/2}\) limit. J Chem Phys 121(14):6779–6784.  https://doi.org/10.1063/1.1788657ADSCrossRefGoogle Scholar
  66. 66.
    Pichler M, Stwalley WC, Dulieu O (2006) Perturbation effects in photoassociation spectra of ultracold Cs\(_{2}\). J Phys B: At, Mol Opt Phys 39(19):S981.  https://doi.org/10.1088/0953-4075/39/19/S12ADSCrossRefGoogle Scholar
  67. 67.
    Pruvost L, Jelassi H (2010) Weakly bound (6S\(_{1/2}\)+6P\(_{1/2}\)) \(0^{-}_{ g}\) Cs\(_2\) levels analysed using the vibrational quantum defect: detection of two deeply bound (6S\(_{1/2}\)+6P\(_{1/2}\)) \(0^{-}_{ g}\) levels. J Phys B: At, Mol Opt Phys 43(12):125,301.  https://doi.org/10.1088/0953-4075/43/12/125301ADSCrossRefGoogle Scholar
  68. 68.
    Roy R, Shrestha R, Green A, Gupta S, Li M, Kotochigova S, Petrov A, Yuen CH (2016) Photoassociative production of ultracold heteronuclear YbLi\(^{\ast }\) molecules. Phys Rev A 94(3):033,413.  https://doi.org/10.1103/physreva.94.033413
  69. 69.
    Safronova MS, Budker D, DeMille D, Kimball DFJ, Derevianko A, Clark CW (2018) Search for new physics with atoms and molecules. Rev Mod Phys 90(025):008.  https://doi.org/10.1103/RevModPhys.90.025008MathSciNetCrossRefGoogle Scholar
  70. 70.
    Sage JM, Sainis S, Bergeman T, DeMille D (2005) Optical production of ultracold polar molecules. Phys Rev Lett 94(20):203,001.  https://doi.org/10.1103/physrevlett.94.203001
  71. 71.
    Sivia D, Skilling J (2006) Data analysis: a Bayesian tutorial. Oxford University PressGoogle Scholar
  72. 72.
    Steck DA (2010) Cesium D line data. http://steck.us/alkalidata (revision 2.1.4)
  73. 73.
    Stellmer S, Pasquiou B, Grimm R, Schreck F (2012) Creation of ultracold Sr\(_{2}\) molecules in the electronic ground state. Phys Rev Lett 109(11):115,302.  https://doi.org/10.1103/PhysRevLett.109.115302
  74. 74.
    Sugawa S, Yamazaki R, Taie S, Takahashi Y (2011) Bose-Einstein condensate in gases of rare atomic species. Phys Rev A 84(1):011,610.  https://doi.org/10.1103/PhysRevA.84.011610
  75. 75.
    Taie S, Takasu Y, Sugawa S, Yamazaki R, Tsujimoto T, Murakami R, Takahashi Y (2010) Realization of a \({\rm SU} (2)\times {\rm SU} (6)\) system of fermions in a cold atomic gas. Phys Rev Lett 105(19):190,401.  https://doi.org/10.1103/PhysRevLett.105.190401
  76. 76.
    Takasu Y, Takahashi Y (2009) Quantum degenerate gases of ytterbium atoms. J Phys Soc Jpn 78(1):012,001.  https://doi.org/10.1143/JPSJ.78.012001ADSCrossRefGoogle Scholar
  77. 77.
    Takasu Y, Maki K, Komori K, Takano T, Honda K, Kumakura M, Yabuzaki T, Takahashi Y (2003) Spin-singlet Bose-Einstein condensation of two-electron atoms. Phys Rev Lett 91(4):040,404.  https://doi.org/10.1103/PhysRevLett.91.040404
  78. 78.
    Takasu Y, Komori K, Honda K, Kumakura M, Yabuzaki T, Takahashi Y (2004) Photoassociation spectroscopy of laser-cooled ytterbium atoms. Phys Rev Lett 93(123):202.  https://doi.org/10.1103/PhysRevLett.93.123202CrossRefGoogle Scholar
  79. 79.
    Thorpe JI, Numata K, Livas J (2008) Laser frequency stabilization and control through offset sideband locking to optical cavities. Opt Express 16(20):15,980.  https://doi.org/10.1364/oe.16.015980ADSCrossRefGoogle Scholar
  80. 80.
    Tiesinga E, Williams C, Julienne P, Jones K, Lett P, Phillips W (1996) A spectroscopic determination of scattering lengths for sodium atom collisions. J Res Nat Inst Stand Technol 101(4):505.  https://doi.org/10.6028/jres.101.051CrossRefGoogle Scholar
  81. 81.
    Tolra BL, Drag C, Pillet P (2001) Observation of cold state-selected cesium molecules formed by stimulated Raman photoassociation. Phys Rev A 64(6):061,401.  https://doi.org/10.1103/physreva.64.061401
  82. 82.
    Tolra BL, Hoang N, T’Jampens B, Vanhaecke N, Drag C, Crubellier A, Comparat D, Pillet P (2003) Controlling the formation of cold molecules via a Feshbach resonance. Europhys Lett 64(2):171–177.  https://doi.org/10.1209/epl/i2003-00284-xADSCrossRefGoogle Scholar
  83. 83.
    Udem T, Reichert J, Holzwarth R, Hänsch TW (1999) Absolute optical frequency measurement of the cesium \({\mathit{d}}_{1}\) line with a mode-locked laser. Phys Rev Lett 82(18):3568–3571.  https://doi.org/10.1103/physrevlett.82.3568ADSCrossRefGoogle Scholar
  84. 84.
    Vanhaecke N, de Souza Melo W, Tolra BL, Comparat D, Pillet P (2002) Accumulation of cold cesium molecules via photoassociation in a mixed atomic and molecular trap. Phys Rev Lett 89(6):063,001.  https://doi.org/10.1103/physrevlett.89.063001
  85. 85.
    Vanhaecke N, Lisdat C, T’Jampens B, Comparat D, Crubellier A, Pillet P (2004) Accurate asymptotic ground state potential curves of Cs\(_{2}\) from two-colour photoassociation. Eur Phys J D 28(3):351–360.  https://doi.org/10.1140/epjd/e2004-00001-yADSCrossRefGoogle Scholar
  86. 86.
    Weiner J, Bagnato VS, Zilio S, Julienne PS (1999) Experiments and theory in cold and ultracold collisions. Rev Mod Phys 71(1):1–85.  https://doi.org/10.1103/revmodphys.71.1ADSCrossRefGoogle Scholar
  87. 87.
    Wu J, Ma J, Zhang Y, Li Y, Wang L, Zhao Y, Chen G, Xiao L, Jia S (2011) High sensitive trap loss spectroscopic detection of the lowest vibrational levels of ultracold molecules. Phys Chem Chem Phys 13(42):18,921.  https://doi.org/10.1039/c1cp22314cCrossRefGoogle Scholar
  88. 88.
    Zabawa P, Wakim A, Haruza M, Bigelow NP (2011) Formation of ultracold \({X}^{1}{\Sigma }^{+}(v^{^{\prime }}=0)\) NaCs molecules via coupled photoassociation channels. Phys Rev A 84(061):401.  https://doi.org/10.1103/PhysRevA.84.061401CrossRefGoogle Scholar
  89. 89.
    Zelevinsky T, Kotochigova S, Ye J (2008) Precision test of mass-ratio variations with lattice-confined ultracold molecules. Phys Rev Lett 100(4):043,201.  https://doi.org/10.1103/physrevlett.100.043201
  90. 90.
    Zuchowski PS, Hutson JM (2010) Reactions of ultracold alkali-metal dimers. Phys Rev A 81(6):060,703.  https://doi.org/10.1103/PhysRevA.81.060703

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PhysicsDurham UniversityDurhamUK

Personalised recommendations