Advertisement

A Quantum Degenerate Gas of Cs

  • Alexander GuttridgeEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The efficient preparation of a high PSD mixture in a dipole trap is an essential step towards molecule production. With the dipole trap carefully tailored to optimise the production of degenerate gases of Yb atoms, we then concentrated on the production of a Cs BEC.

References

  1. 1.
    Anderson MH, Ensher JR, Matthews MR, Wieman CE, Cornell EA (1995) Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269(5221):198–201.  https://doi.org/10.1126/science.269.5221.198ADSCrossRefGoogle Scholar
  2. 2.
    Arlt J, Bance P, Hopkins S, Martin J, Webster S, Wilson A, Zetie K, Foot CJ (1998) Suppression of collisional loss from a magnetic trap. J Phys B At, Mol Opt Phys 31(7):L321–L327.  https://doi.org/10.1088/0953-4075/31/7/006ADSCrossRefGoogle Scholar
  3. 3.
    Arndt M, Dahan MB, Guéry-Odelin D, Reynolds MW, Dalibard J (1997) Observation of a zero-energy resonance in Cs-Cs collisions. Phys Rev Lett 79(4):625–628.  https://doi.org/10.1103/physrevlett.79.625ADSCrossRefGoogle Scholar
  4. 4.
    Berninger M, Zenesini A, Huang B, Harm W, Nägerl HC, Ferlaino F, Grimm R, Julienne PS, Hutson JM (2013) Feshbach resonances, weakly bound molecular states, and coupled-channel potentials for cesium at high magnetic fields. Phys Rev A 87(3):032,517.  https://doi.org/10.1103/physreva.87.032517
  5. 5.
    Boiron D, Michaud A, Lemonde P, Castin Y, Salomon C, Weyers S, Szymaniec K, Cognet L, Clairon A (1996) Laser cooling of cesium atoms in gray optical molasses down to \(1.1 \, \mu \)k. Phys Rev A 53:R3734–R3737.  https://doi.org/10.1103/PhysRevA.53.R3734ADSCrossRefGoogle Scholar
  6. 6.
    Chin C, Vuletić V, Kerman AJ, Chu S, Tiesinga E, Leo PJ, Williams CJ (2004) Precision Feshbach spectroscopy of ultracold Cs\(_{2}\). Phys Rev A 70(3):032,701.  https://doi.org/10.1103/physreva.70.032701
  7. 7.
    Dalibard J, Cohen-Tannoudji C (1989) Laser cooling below the Doppler limit by polarization gradients: simple theoretical models. J Opt Soc Am B 6(11):2023–2045.  https://doi.org/10.1364/josab.6.002023ADSCrossRefGoogle Scholar
  8. 8.
    Davis KB, Mewes MO, Andrews MR, van Druten NJ, Durfee DS, Kurn DM, Ketterle W (1995) Bose-Einstein condensation in a gas of sodium atoms. Phys Rev Lett 75(22):3969.  https://doi.org/10.1103/PhysRevLett.75.3969ADSCrossRefGoogle Scholar
  9. 9.
    Fölling S (2003) 3D Raman sideband cooling of rubidium. Master’s thesisGoogle Scholar
  10. 10.
    Gröbner M (2017) A quantum gas apparatus for ultracold mixtures of K and Cs. PhD thesisGoogle Scholar
  11. 11.
    Grynberg G, Lounis B, Verkerk P, Courtois JY, Salomon C (1993) Quantized motion of cold cesium atoms in two- and three-dimensional optical potentials. Phys Rev Lett 70(15):2249–2252.  https://doi.org/10.1103/physrevlett.70.2249ADSCrossRefGoogle Scholar
  12. 12.
    Guery-Odelin D, Soeding J, Desbiolles P, Dalibard J (1998) Strong evaporative cooling of a trapped cesium gas. Opt Express 2(8):323.  https://doi.org/10.1364/oe.2.000323ADSCrossRefGoogle Scholar
  13. 13.
    Gustavsson M (2008) A quantum gas with tunable interactions in an optical lattice. PhD thesisGoogle Scholar
  14. 14.
    Guttridge A, Hopkins SA, Kemp SL, Frye MD, Hutson JM, Cornish SL (2017) Interspecies thermalization in an ultracold mixture of Cs and Yb in an optical trap. Phys Rev A 96(012):704.  https://doi.org/10.1103/PhysRevA.96.012704CrossRefGoogle Scholar
  15. 15.
    Han DJ, Wolf S, Oliver S, McCormick C, DePue MT, Weiss DS (2000) 3D Raman sideband cooling of cesium atoms at high density. Phys Rev Lett 85(4):724–727.  https://doi.org/10.1103/physrevlett.85.724ADSCrossRefGoogle Scholar
  16. 16.
    Herbig J (2005) Quantum-degenerate cesium: atoms and molecules. PhD thesisGoogle Scholar
  17. 17.
    Hopkins SA, Webster S, Arlt J, Bance P, Cornish S, Maragò O, Foot CJ (2000) Measurement of elastic cross section for cold cesium collisions. Phys Rev A 61(3):032,707.  https://doi.org/10.1103/physreva.61.032707
  18. 18.
    Hung CL (2011) In situ probing of two-dimensional quantum gases. PhD thesisGoogle Scholar
  19. 19.
    Hung CL, Zhang X, Gemelke N, Chin C (2008) Accelerating evaporative cooling of atoms into Bose-Einstein condensation in optical traps. Phys Rev A 78(1):011,604.  https://doi.org/10.1103/PhysRevA.78.011604
  20. 20.
    Kagan Y, Svistunov BV, Shlyapnikov GV (1985) Effect of Bose condensation on inelastic processes in gases. JETP Lett 42:209ADSGoogle Scholar
  21. 21.
    Kastberg A, Phillips WD, Rolston SL, Spreeuw RJC, Jessen PS (1995) Adiabatic cooling of cesium to \(700\) nK in an optical lattice. Phys Rev Lett 74(9):1542–1545.  https://doi.org/10.1103/physrevlett.74.1542ADSCrossRefGoogle Scholar
  22. 22.
    Kerman AJ, Vuletić V, Chin C, Chu S (2000) Beyond optical molasses: 3D Raman sideband cooling of atomic cesium to high phase-space density. Phys Rev Lett 84:439–442.  https://doi.org/10.1103/PhysRevLett.84.439ADSCrossRefGoogle Scholar
  23. 23.
    Ketterle W, Durfee D, Stamper-Kurn D (1999) Making, probing and understanding Bose-Einstein condensates, IOS Press, pp 67–176.  https://doi.org/10.3254/978-1-61499-225-7-67
  24. 24.
    Kraemer T, Herbig J, Mark M, Weber T, Chin C, Nägerl HC, Grimm R (2004) Optimized production of a cesium Bose-Einstein condensate. Appl Phys B 79(8):1013–1019.  https://doi.org/10.1007/s00340-004-1657-5ADSCrossRefGoogle Scholar
  25. 25.
    Kraemer T, Mark M, Waldburger P, Danzl JG, Chin C, Engeser B, Lange AD, Pilch K, Jaakkola A, Nägerl HC, Grimm R (2006) Evidence for Efimov quantum states in an ultracold gas of caesium atoms. Nature 440(7082):315–318.  https://doi.org/10.1038/nature04626ADSCrossRefGoogle Scholar
  26. 26.
    Lauber T, Küber J, Wille O, Birkl G (2011) Optimized Bose-Einstein-condensate production in a dipole trap based on a \(1070\)-nm multifrequency laser: influence of enhanced two-body loss on the evaporation process. Phys Rev A 84(4):043,641.  https://doi.org/10.1103/physreva.84.043641
  27. 27.
    Lett PD, Phillips WD, Rolston SL, Tanner CE, Watts RN, Westbrook CI (1989) Optical molasses. J Opt Soc Am B 6(11):2084–2107.  https://doi.org/10.1364/josab.6.002084ADSCrossRefGoogle Scholar
  28. 28.
    Li Y, Feng G, Xu R, Wang X, Wu J, Chen G, Dai X, Ma J, Xiao L, Jia S (2015) Magnetic levitation for effective loading of cold cesium atoms in a crossed dipole trap. Phys Rev A 91(5):053,604.  https://doi.org/10.1103/physreva.91.053604
  29. 29.
    McCarron DJ, Cho HW, Jenkin DL, Köppinger MP, Cornish SL (2011) Dual-species Bose-Einstein condensate of \(^{87}\)Rb and \(^{133}\)Cs. Phys Rev A 84(1):011,603.  https://doi.org/10.1103/PhysRevA.84.011603
  30. 30.
    Menegatti CR, Marangoni BS, Bouloufa-Maafa N, Dulieu O, Marcassa LG (2013) Trap loss in a rubidium crossed dipole trap by short-range photoassociation. Phys Rev A 87(5):053,404.  https://doi.org/10.1103/physreva.87.053404
  31. 31.
    Passagem HF, Colín-Rodríguez R, da Silva PCV, Bouloufa-Maafa N, Dulieu O, Marcassa LG (2017) Formation of ultracold molecules induced by a high-power single-frequency fiber laser. J Phys B: At, Mol Opt Phys 50(4):045,202.  https://doi.org/10.1088/1361-6455/aa5a6eADSCrossRefGoogle Scholar
  32. 32.
    Pinkse PWH, Mosk A, Weidemüller M, Reynolds MW, Hijmans TW, Walraven JTM (1997) Adiabatically changing the phase-space density of a trapped bose gas. Phys Rev Lett 78(6):990–993.  https://doi.org/10.1103/physrevlett.78.990ADSCrossRefGoogle Scholar
  33. 33.
    Pires RJAA (2014) Efimov resonances in an ultracold mixture with extreme mass imbalance. PhD thesisGoogle Scholar
  34. 34.
    Söding J, Guéry-Odelin D, Desbiolles P, Ferrari G, Dalibard J (1998) Giant spin relaxation of an ultracold cesium gas. Phys Rev Lett 80(9):1869–1872.  https://doi.org/10.1103/physrevlett.80.1869ADSCrossRefGoogle Scholar
  35. 35.
    Stamper-Kurn DM, Miesner HJ, Chikkatur AP, Inouye S, Stenger J, Ketterle W (1998) Reversible formation of a Bose-Einstein condensate. Phys Rev Lett 81(11):2194.  https://doi.org/10.1103/PhysRevLett.81.2194ADSCrossRefGoogle Scholar
  36. 36.
    Steck DA (2010) Cesium D line data. http://steck.us/alkalidata (revision 2.1.4)
  37. 37.
    Thomas AM, Hopkins S, Cornish SL, Foot CJ (2003) Strong evaporative cooling towards Bose-Einstein condensation of a magnetically trapped caesium gas. J Opt B Quantum Semiclassical Opt 5(2):S107–S111.  https://doi.org/10.1088/1464-4266/5/2/366ADSCrossRefGoogle Scholar
  38. 38.
    Treutlein P, Chung KY, Chu S (2001) High-brightness atom source for atomic fountains. Phys Rev A 63(5):051,401.  https://doi.org/10.1103/physreva.63.051401
  39. 39.
    Vuletić V, Chin C, Kerman AJ, Chu S (1998) Degenerate Raman sideband cooling of trapped cesium atoms at very high atomic densities. Phys Rev Lett 81:5768–5771.  https://doi.org/10.1103/PhysRevLett.81.5768ADSCrossRefGoogle Scholar
  40. 40.
    Weber T (2003) Bose-Einstein condensation of optically trapped cesium. PhD thesisGoogle Scholar
  41. 41.
    Weber T, Herbig J, Mark M, Nägerl HC, Grimm R (2003a) Bose-Einstein condensation of cesium. Science 299(5604):232–235.  https://doi.org/10.1126/science.1079699ADSCrossRefGoogle Scholar
  42. 42.
    Weber T, Herbig J, Mark M, Nägerl HC, Grimm R (2003b) Three-body recombination at large scattering lengths in an ultracold atomic gas. Phys Rev Lett 91(123):201.  https://doi.org/10.1103/PhysRevLett.91.123201

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PhysicsDurham UniversityDurhamUK

Personalised recommendations