Advertisement

Introduction

  • Alexander GuttridgeEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Ultracold polar molecules are an exciting avenue of research with potential applications in many areas of physics and chemistry [7, 13, 15, 66]. The richness in applications of ultracold molecules stems from their complex internal structure which allows the study of ultracold chemistry [50], few-body physics [77], quantum simulation of many-body systems [61], quantum computation [24] and the exploration of fundamental physics through precision measurement [15, 79].

References

  1. 1.
    Abrahamsson E, Tscherbul TV, Krems RV (2007) Inelastic collisions of cold polar molecules in nonparallel electric and magnetic fields. J Chem Phys 127(4):044,302.  https://doi.org/10.1063/1.2748770ADSCrossRefGoogle Scholar
  2. 2.
    Alyabyshev SV, Lemeshko M, Krems RV (2012) Sensitive imaging of electromagnetic fields with paramagnetic polar molecules. Phys Rev A 86(1):013,409.  https://doi.org/10.1103/PhysRevA.86.013409
  3. 3.
    Barbé V, Ciamei A, Pasquiou B, Reichsöllner L, Schreck F, Zuchowski PS, Hutson JM (2018) Observation of Feshbach resonances between alkali and closed-shell atoms. Nat Phys 14:881–884.  https://doi.org/10.1038/s41567-018-0169-xCrossRefGoogle Scholar
  4. 4.
    Baron J, Campbell WC, DeMille D, Doyle JM, Gabrielse G, Gurevich YV, Hess PW, Hutzler NR, Kirilov E, Kozyryev I, O’Leary BR, Panda CD, Parsons MF, Petrik ES, Spaun B, Vutha AC, West AD (2014) Order of magnitude smaller limit on the electric dipole moment of the electron. Science 343(6168):269–272.  https://doi.org/10.1126/science.1248213ADSCrossRefGoogle Scholar
  5. 5.
    Bethlem HL, Berden G, Meijer G (1999) Decelerating neutral dipolar molecules. Phys Rev Lett 83(8):1558–1561.  https://doi.org/10.1103/physrevlett.83.1558ADSCrossRefGoogle Scholar
  6. 6.
    Bethlem HL, Berden G, Crompvoets FMH, Jongma RT, van Roij AJA, Meijer G (2000) Electrostatic trapping of ammonia molecules. Nature 406(6795):491–494.  https://doi.org/10.1038/35020030ADSCrossRefGoogle Scholar
  7. 7.
    Bohn JL, Rey AM, Ye J (2017) Cold molecules: progress in quantum engineering of chemistry and quantum matter. Science 357(6355):1002–1010.  https://doi.org/10.1126/science.aam6299ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bruderer M, Klein A, Clark SR, Jaksch D (2008) Transport of strong-coupling polarons in optical lattices. New J Phys 10(3):033,015.  https://doi.org/10.1088/1367-2630/10/3/033015ADSCrossRefGoogle Scholar
  9. 9.
    Brue DA, Hutson JM (2013) Prospects of forming ultracold molecules in \(^{2}\Sigma \) states by magnetoassociation of alkali-metal atoms with Yb. Phys Rev A 87(5):052,709.  https://doi.org/10.1103/physreva.87.052709
  10. 10.
    Butler KL (2014) A dual species MOT of Yb and Cs. PhD thesisGoogle Scholar
  11. 11.
    Cahn SB, Ammon J, Kirilov E, Gurevich YV, Murphree D, Paolino R, Rahmlow DA, Kozlov MG, DeMille D (2014) Zeeman-tuned rotational level-crossing spectroscopy in a diatomic free radical. Phys Rev Lett 112(16):163,002.  https://doi.org/10.1103/PhysRevLett.112.163002
  12. 12.
    Cairncross WB, Gresh DN, Grau M, Cossel KC, Roussy TS, Ni Y, Zhou Y, Ye J, Cornell EA (2017) Precision measurement of the electron’s electric dipole moment using trapped molecular ions. Phys Rev Lett 119(15):153,001.  https://doi.org/10.1103/physrevlett.119.153001
  13. 13.
    Carr LD, DeMille D, Krems RV, Ye J (2009) Cold and ultracold molecules: science, technology and applications. New J Phys 11(5):055,049.  https://doi.org/10.1088/1367-2630/11/5/055049ADSCrossRefGoogle Scholar
  14. 14.
    Chervenkov S, Wu X, Bayerl J, Rohlfes A, Gantner T, Zeppenfeld M, Rempe G (2014) Continuous centrifuge decelerator for polar molecules. Phys Rev Lett 112(1):013,001.  https://doi.org/10.1103/PhysRevLett.112.013001
  15. 15.
    Chin C, Flambaum VV, Kozlov MG (2009) Ultracold molecules: new probes on the variation of fundamental constants. New J Phys 11(5):055,048.  https://doi.org/10.1088/1367-2630/11/5/055048ADSCrossRefGoogle Scholar
  16. 16.
    Chou CW, Kurz C, Hume DB, Plessow PN, Leibrandt DR, Leibfried D (2017) Preparation and coherent manipulation of pure quantum states of a single molecular ion. Nature 545(7653):203–207.  https://doi.org/10.1038/nature22338ADSCrossRefGoogle Scholar
  17. 17.
    Cinti F, Macrì T, Lechner W, Pupillo G, Pohl T (2014) Defect-induced supersolidity with soft-core bosons. Nat Commun 5:3235.  https://doi.org/10.1038/ncomms4235ADSCrossRefGoogle Scholar
  18. 18.
    Collopy AL, Ding S, Wu Y, Finneran IA, Anderegg L, Augenbraun BL, Doyle JM, Ye J (2018) 3-D magneto-optical trap of yttrium monoxide. Phys Rev Lett 121(21):213201  https://doi.org/10.1103/PhysRevLett.121.213201
  19. 19.
    Covey JP, Moses SA, Gärttner M, Safavi-Naini A, Miecnikowski MT, Fu Z, Schachenmayer J, Julienne PS, Rey AM, Jin DS, Ye J (2016) Doublon dynamics and polar molecule production in an optical lattice. Nat Commun 7(11):279.  https://doi.org/10.1038/ncomms11279CrossRefGoogle Scholar
  20. 20.
    Danzl JG, Haller E, Gustavsson M, Mark MJ, Hart R, Bouloufa N, Dulieu O, Ritsch H, Nägerl HC (2008) Quantum gas of deeply bound ground state molecules. Science 321(5892):1062–1066.  https://doi.org/10.1126/science.1159909ADSCrossRefGoogle Scholar
  21. 21.
    Danzl JG, Mark MJ, Haller E, Gustavsson M, Hart R, Aldegunde J, Hutson JM, Nägerl HC (2010) An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice. Nat Phys 6(4):265–270.  https://doi.org/10.1038/nphys153CrossRefGoogle Scholar
  22. 22.
    Deiglmayr J, Grochola A, Repp M, Mörtlbauer K, Glück C, Lange J, Dulieu O, Wester R, Weidemüller M (2008) Formation of ultracold polar molecules in the rovibrational ground state. Phys Rev Lett 101(13):133,004.  https://doi.org/10.1103/PhysRevLett.101.133004
  23. 23.
    Deiglmayr J, Pellegrini P, Grochola A, Repp M, Cöté R, Dulieu O, Wester R, Weidemüller M (2009) Influence of a Feshbach resonance on the photoassociation of LiCs. New J Phys 11(5):055,034.  https://doi.org/10.1088/1367-2630/11/5/055034ADSCrossRefGoogle Scholar
  24. 24.
    DeMille D (2002) Quantum computation with trapped polar molecules. Phys Rev Lett 88(6):067,901.  https://doi.org/10.1103/PhysRevLett.88.067901
  25. 25.
    Devlin JA, Tarbutt MR (2016) Three-dimensional Doppler, polarization-gradient, and magneto-optical forces for atoms and molecules with dark states. New J Phys 18(12):123,017.  https://doi.org/10.1088/1367-2630/18/12/123017ADSCrossRefGoogle Scholar
  26. 26.
    Fitch NJ, Tarbutt MR (2016) Principles and design of a Zeeman-Sisyphus decelerator for molecular beams. ChemPhysChem 17(22):3609–3623.  https://doi.org/10.1002/cphc.201600656CrossRefGoogle Scholar
  27. 27.
    Flores AS, Mishra HP, Vassen W, Knoop S (2017) An ultracold, optically trapped mixture of \({}^{87}\)Rb and metastable \({}^{4}\)He atoms. Eur Phys J D 71(3):49.  https://doi.org/10.1140/epjd/e2017-70675-yADSCrossRefGoogle Scholar
  28. 28.
    Freytag R (2015) Simultaneous magneto-optical trapping of ytterbium and caesium. PhD thesisGoogle Scholar
  29. 29.
    Fukuhara T, Sugawa S, Takahashi Y (2007a) Bose-Einstein condensation of an ytterbium isotope. Phys Rev A 76(5):051,604.  https://doi.org/10.1103/PhysRevA.76.051604
  30. 30.
    Fukuhara T, Takasu Y, Kumakura M, Takahashi Y (2007b) Degenerate Fermi gases of ytterbium. Phys Rev Lett 98(3):030,401.  https://doi.org/10.1103/PhysRevLett.98.030401
  31. 31.
    Glaetzle AW, Dalmonte M, Nath R, Rousochatzakis I, Moessner R, Zoller P (2014) Quantum spin-ice and dimer models with Rydberg atoms. Phys Rev X 4(041):037.  https://doi.org/10.1103/PhysRevX.4.041037CrossRefGoogle Scholar
  32. 32.
    Günter K, Stöferle T, Moritz H, Köhl M, Esslinger T (2006) Bose-Fermi mixtures in a three-dimensional optical lattice. Phys Rev Lett 96(18):180,402.  https://doi.org/10.1103/physrevlett.96.180402
  33. 33.
    Góral K, Santos L, Lewenstein M (2002) Quantum phases of dipolar bosons in optical lattices. Phys Rev Lett 88(170):406.  https://doi.org/10.1103/PhysRevLett.88.170406CrossRefGoogle Scholar
  34. 34.
    Griessner A, Daley AJ, Clark SR, Jaksch D, Zoller P (2006) Dark-state cooling of atoms by superfluid immersion. Phys Rev Lett 97(22):220,403.  https://doi.org/10.1103/PhysRevLett.97.220403
  35. 35.
    Guo M, Zhu B, Lu B, Ye X, Wang F, Vexiau R, Bouloufa-Maafa N, Quéméner G, Dulieu O, Wang D (2016) Creation of an ultracold gas of ground-state dipolar \(^{23}{{\rm Na}}^{87}{{\rm Rb}}\) molecules. Phys Rev Lett 116(205):303.  https://doi.org/10.1103/PhysRevLett.116.205303
  36. 36.
    Hara H, Takasu Y, Yamaoka Y, Doyle JM, Takahashi Y (2011) Quantum degenerate mixtures of alkali and alkaline-earth-like atoms. Phys Rev Lett 106(20):205,304.  https://doi.org/10.1103/PhysRevLett.106.205304
  37. 37.
    Herrera F, Cao Y, Kais S, Whaley KB (2014) Infrared-dressed entanglement of cold open-shell polar molecules for universal matchgate quantum computing. New J Phys 16(7):075,001.  https://doi.org/10.1088/1367-2630/16/7/075001ADSCrossRefGoogle Scholar
  38. 38.
    Hoekstra S, Metsälä M, Zieger PC, Scharfenberg L, Gilijamse JJ, Meijer G, van de Meerakker SYT (2007) Electrostatic trapping of metastable NH molecules. Phys Rev A 76(6):063,408.  https://doi.org/10.1103/PhysRevA.76.063408
  39. 39.
    Hudson J, Kara D, Smallman I, Sauer B, Tarbutt M, Hinds E (2011) Improved measurement of the shape of the electron. Nature 473(7348):493–496.  https://doi.org/10.1038/nature10104ADSCrossRefGoogle Scholar
  40. 40.
    Hummon MT, Yeo M, Stuhl BK, Collopy AL, Xia Y, Ye J (2013) 2D magneto-optical trapping of diatomic molecules. Phys Rev Lett 110(14):143,001.  https://doi.org/10.1103/PhysRevLett.110.143001
  41. 41.
    Hutzler NR, Lu HI, Doyle JM (2012) The buffer gas beam: an intense, cold, and slow source for atoms and molecules. Chem Rev 112(9):4803–4827.  https://doi.org/10.1021/cr200362uCrossRefGoogle Scholar
  42. 42.
    Ivanov VV, Khramov A, Hansen AH, Dowd WH, Münchow F, Jamison AO, Gupta S (2011) Sympathetic cooling in an optically trapped mixture of alkali and spin-singlet atoms. Phys Rev Lett 106(153):201.  https://doi.org/10.1103/PhysRevLett.106.153201CrossRefGoogle Scholar
  43. 43.
    Jayich A, Long X, Campbell W (2016) Direct frequency comb laser cooling and trapping. Phys Rev X 6(4):041,004.  https://doi.org/10.1103/physrevx.6.041004
  44. 44.
    Jones KM, Tiesinga E, Lett PD, Julienne PS (2006) Ultracold photoassociation spectroscopy: long-range molecules and atomic scattering. Rev Mod Phys 78(2):483–535.  https://doi.org/10.1103/revmodphys.78.483ADSCrossRefGoogle Scholar
  45. 45.
    Kantrowitz A, Grey J (1951) A high intensity source for the molecular beam. part i. theoretical. Rev Sci Instrum 22(5):328–332.  https://doi.org/10.1063/1.1745921ADSCrossRefGoogle Scholar
  46. 46.
    Karra M, Sharma K, Friedrich B, Kais S, Herschbach D (2016) Prospects for quantum computing with an array of ultracold polar paramagnetic molecules. J Chem Phys 144(9):094,301.  https://doi.org/10.1063/1.4942928ADSCrossRefGoogle Scholar
  47. 47.
    Kemp SL (2017) Laser cooling and optical trapping of ytterbium. PhD thesis, Durham UniversityGoogle Scholar
  48. 48.
    Klein A, Bruderer M, Clark SR, Jaksch D (2007) Dynamics, dephasing and clustering of impurity atoms in Bose-Einstein condensates. New J Phys 9(11):411.  https://doi.org/10.1088/1367-2630/9/11/411CrossRefGoogle Scholar
  49. 49.
    Kozyryev I, Baum L, Matsuda K, Augenbraun BL, Anderegg L, Sedlack AP, Doyle JM (2017) Sisyphus laser cooling of a polyatomic molecule. Phys Rev Lett 118(173):201.  https://doi.org/10.1103/PhysRevLett.118.173201CrossRefGoogle Scholar
  50. 50.
    Krems RV (2008) Cold controlled chemistry. Phys Chem Chem Phys 10(28):4079–4092.  https://doi.org/10.1039/B802322KCrossRefGoogle Scholar
  51. 51.
    Lang F, Winkler K, Strauss C, Grimm R, Denschlag JH (2008) Ultracold triplet molecules in the rovibrational ground state. Phys Rev Lett 101(13):133,005.  https://doi.org/10.1103/PhysRevLett.101.133005
  52. 52.
    Lavert-Ofir E, Gersten S, Henson AB, Shani I, David L, Narevicius J, Narevicius E (2011) A moving magnetic trap decelerator: a new source of cold atoms and molecules. New J Phys 13(10):103,030.  https://doi.org/10.1088/1367-2630/13/10/103030ADSCrossRefGoogle Scholar
  53. 53.
    Lechner W, Zoller P (2013) From classical to quantum glasses with ultracold polar molecules. Phys Rev Lett 111(185):306.  https://doi.org/10.1103/PhysRevLett.111.185306CrossRefGoogle Scholar
  54. 54.
    Lewenstein M, Santos L, Baranov M, Fehrmann H (2004) Atomic Bose-Fermi mixtures in an optical lattice. Phys Rev Lett 92(5):050,401.  https://doi.org/10.1103/physrevlett.92.050401
  55. 55.
    Lim J, Frye MD, Hutson JM, Tarbutt MR (2015) Modeling sympathetic cooling of molecules by ultracold atoms. Phys Rev A 92(053):419.  https://doi.org/10.1103/PhysRevA.92.053419CrossRefGoogle Scholar
  56. 56.
    Marchetti FM, Mathy CJM, Huse DA, Parish MM (2008) Phase separation and collapse in Bose-Fermi mixtures with a Feshbach resonance. Phys Rev B 78(13):134,517.  https://doi.org/10.1103/physrevb.78.134517
  57. 57.
    Maxwell SE, Brahms N, deCarvalho R, Glenn DR, Helton JS, Nguyen SV, Patterson D, Petricka J, DeMille D, Doyle JM (2005) High-flux beam source for cold, slow atoms or molecules. Phys Rev Lett 95(17):173,201.  https://doi.org/10.1103/physrevlett.95.173201
  58. 58.
    Mayle M, Quéméner G, Ruzic BP, Bohn JL (2013) Scattering of ultracold molecules in the highly resonant regime. Phys Rev A 87(1):012,709.  https://doi.org/10.1103/physreva.87.012709
  59. 59.
    van de Meerakker SYT, Smeets PHM, Vanhaecke N, Jongma RT, Meijer G (2005) Deceleration and electrostatic trapping of OH radicals. Phys Rev Lett 94(2):023,004.  https://doi.org/10.1103/PhysRevLett.94.023004
  60. 60.
    van de Meerakker SYT, Bethlem HL, Vanhaecke N, Meijer G (2012) Manipulation and control of molecular beams. Chem Rev 112(9):4828–4878.  https://doi.org/10.1021/cr200349rCrossRefGoogle Scholar
  61. 61.
    Micheli A, Brennen G, Zoller P (2006) A toolbox for lattice-spin models with polar molecules. Nat Phys 2(5):341–347.  https://doi.org/10.1038/nphys287CrossRefGoogle Scholar
  62. 62.
    Mølmer K (1998) Bose condensates and Fermi gases at zero temperature. Phys Rev Lett 80(9):1804–1807.  https://doi.org/10.1103/physrevlett.80.1804ADSCrossRefGoogle Scholar
  63. 63.
    Molony PK, Gregory PD, Ji Z, Lu B, Köppinger MP, Le Sueur CR, Blackley CL, Hutson JM, Cornish SL (2014) Creation of ultracold \(^{87}{{\rm Rb}}^{133}{{\rm Cs}}\) molecules in the rovibrational ground state. Phys Rev Lett 113(25):255,301.  https://doi.org/10.1103/PhysRevLett.113.255301
  64. 64.
    Molony PK, Gregory PD, Kumar A, Le Sueur CR, Hutson JM, Cornish SL (2016) Production of ultracold \(^{87}{{\rm Rb}}^{133}{{\rm Cs}}\) in the absolute ground state: complete characterisation of the STIRAP transfer. ChemPhysChem 17(22):3811–3817.  https://doi.org/10.1002/cphc.201600501CrossRefGoogle Scholar
  65. 65.
    Moses SA, Covey JP, Miecnikowski MT, Yan B, Gadway B, Ye J, Jin DS (2015) Creation of a low-entropy quantum gas of polar molecules in an optical lattice. Science 350(6261):659–662.  https://doi.org/10.1126/science.aac6400ADSCrossRefGoogle Scholar
  66. 66.
    Moses SA, Covey JP, Miecnikowski MT, Jin DS, Ye J (2016) New frontiers for quantum gases of polar molecules. Nat Phys 13(1):13–20.  https://doi.org/10.1038/nphys3985CrossRefGoogle Scholar
  67. 67.
    Narevicius E, Libson A, Parthey CG, Chavez I, Narevicius J, Even U, Raizen MG (2008) Stopping supersonic oxygen with a series of pulsed electromagnetic coils: a molecular coilgun. Phys Rev A 77(5):051,401.  https://doi.org/10.1103/physreva.77.051401
  68. 68.
    Ni KK, Ospelkaus S, de Miranda MHG, Pe’er A, Neyenhuis B, Zirbel JJ, Kotochigova S, Julienne PS, Jin DS, Ye J (2008) A high phase-space-density gas of polar molecules. Science 322(5899):231–235.  https://doi.org/10.1126/science.1163861ADSCrossRefGoogle Scholar
  69. 69.
    Ni KK, Ospelkaus S, Wang D, Quéméner G, Neyenhuis B, De Miranda M, Bohn J, Ye J, Jin D (2010) Dipolar collisions of polar molecules in the quantum regime. Nature 464(7293):1324–1328.  https://doi.org/10.1038/nature08953ADSCrossRefGoogle Scholar
  70. 70.
    Ospelkaus S, Ospelkaus C, Humbert L, Sengstock K, Bongs K (2006) Tuning of heteronuclear interactions in a degenerate Fermi-Bose mixture. Phys Rev Lett 97(12):120,403.  https://doi.org/10.1103/physrevlett.97.120403
  71. 71.
    Ospelkaus S, Ni KK, Wang D, De Miranda M, Neyenhuis B, Quéméner G, Julienne P, Bohn J, Jin D, Ye J (2010) Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules. Science 327(5967):853–857.  https://doi.org/10.1126/science.1184121ADSCrossRefGoogle Scholar
  72. 72.
    Park JW, Will SA, Zwierlein MW (2015) Ultracold dipolar gas of fermionic \(^{23}{{\rm Na}}^{40}{{\rm K}}\) molecules in their absolute ground state. Phys Rev Lett 114(205):302.  https://doi.org/10.1103/PhysRevLett.114.205302
  73. 73.
    Park JW, Yan ZZ, Loh H, Will SA, Zwierlein MW (2017) Second-scale nuclear spin coherence time of ultracold \(^{23}\)Na\(^{40}\)K molecules. Science 357(6349):372–375.  https://doi.org/10.1126/science.aal5066ADSCrossRefGoogle Scholar
  74. 74.
    Pasquiou B, Bayerle A, Tzanova SM, Stellmer S, Szczepkowski J, Parigger M, Grimm R, Schreck F (2013) Quantum degenerate mixtures of strontium and rubidium atoms. Phys Rev A 88(2):023,601.  https://doi.org/10.1103/PhysRevA.88.023601
  75. 75.
    Pérez-Ríos J, Herrera F, Krems RV (2010) External field control of collective spin excitations in an optical lattice of \(^{2}\Sigma \) molecules. New J Phys 12(10):103,007.  https://doi.org/10.1088/1367-2630/12/10/103007ADSCrossRefGoogle Scholar
  76. 76.
    Quéméner G, Bohn JL (2016) Shielding \(^{2}\Sigma \) ultracold dipolar molecular collisions with electric fields. Phys Rev A 93(012):704.  https://doi.org/10.1103/PhysRevA.93.012704
  77. 77.
    Quemener G, Julienne PS (2012) Ultracold molecules under control! Chem Rev 112(9):4949–5011.  https://doi.org/10.1021/cr300092gCrossRefGoogle Scholar
  78. 78.
    Rvachov TM, Son H, Sommer AT, Ebadi S, Park JJ, Zwierlein MW, Ketterle W, Jamison AO (2017) Long-lived ultracold molecules with electric and magnetic dipole moments. Phys Rev Lett 119(143):001.  https://doi.org/10.1103/PhysRevLett.119.143001CrossRefGoogle Scholar
  79. 79.
    Safronova MS, Budker D, DeMille D, Kimball DFJ, Derevianko A, Clark CW (2018) Search for new physics with atoms and molecules. Rev Mod Phys 90(025):008.  https://doi.org/10.1103/RevModPhys.90.025008MathSciNetCrossRefGoogle Scholar
  80. 80.
    Schmid PC, Greenberg J, Miller MI, Loeffler K, Lewandowski HJ (2017) An ion trap time-of-flight mass spectrometer with high mass resolution for cold trapped ion experiments. Rev Sci Instrum 88(12):123,107.  https://doi.org/10.1063/1.4996911ADSCrossRefGoogle Scholar
  81. 81.
    Schmidt R, Knap M, Ivanov DA, You JS, Cetina M, Demler E (2018) Universal many-body response of heavy impurities coupled to a Fermi sea: a review of recent progress. Rep Prog Phys 81(2):024,401.  https://doi.org/10.1088/1361-6633/aa9593ADSMathSciNetCrossRefGoogle Scholar
  82. 82.
    Sengupta K, Dupuis N, Majumdar P (2007) Bose-Fermi mixtures in an optical lattice. Phys Rev A 75(6):063,625.  https://doi.org/10.1103/physreva.75.063625
  83. 83.
    Steinecker MH, McCarron DJ, Zhu Y, DeMille D (2016) Improved radio-frequency magneto-optical trap of SrF molecules. ChemPhysChem 17(22):3664–3669.  https://doi.org/10.1002/cphc.201600967CrossRefGoogle Scholar
  84. 84.
    Sugawa S, Yamazaki R, Taie S, Takahashi Y (2011) Bose-Einstein condensate in gases of rare atomic species. Phys Rev A 84(1):011,610.  https://doi.org/10.1103/PhysRevA.84.011610
  85. 85.
    Taie S, Takasu Y, Sugawa S, Yamazaki R, Tsujimoto T, Murakami R, Takahashi Y (2010) Realization of a SU (2)\(\times \) SU (6) system of fermions in a cold atomic gas. Phys Rev Lett 105(19):190,401.  https://doi.org/10.1103/PhysRevLett.105.190401
  86. 86.
    Takasu Y, Takahashi Y (2009) Quantum degenerate gases of ytterbium atoms. J Phys Soc Jpn 78(1):012,001.  https://doi.org/10.1143/JPSJ.78.012001ADSCrossRefGoogle Scholar
  87. 87.
    Takasu Y, Maki K, Komori K, Takano T, Honda K, Kumakura M, Yabuzaki T, Takahashi Y (2003) Spin-singlet Bose-Einstein condensation of two-electron atoms. Phys Rev Lett 91(4):040,404.  https://doi.org/10.1103/PhysRevLett.91.040404
  88. 88.
    Takekoshi T, Reichsöllner L, Schindewolf A, Hutson JM, Le Sueur CR, Dulieu O, Ferlaino F, Grimm R, Nägerl HC (2014) Ultracold dense samples of dipolar RbCs molecules in the rovibrational and hyperfine ground state. Phys Rev Lett 113(205301):205,301.  https://doi.org/10.1103/physrevlett.113.205301
  89. 89.
    Tarbutt MR, Bethlem HL, Hudson JJ, Ryabov VL, Ryzhov VA, Sauer BE, Meijer G, Hinds EA (2004) Slowing heavy, ground-state molecules using an alternating gradient decelerator. Phys Rev Lett 92(17):173,002.  https://doi.org/10.1103/PhysRevLett.92.173002
  90. 90.
    Tassy S, Nemitz N, Baumer F, Höhl C, Batär A, Görlitz A (2010) Sympathetic cooling in a mixture of diamagnetic and paramagnetic atoms. J Phys B: At, Mol Opt Phys 43(20):205,309.  https://doi.org/10.1088/0953-4075/43/20/205309ADSCrossRefGoogle Scholar
  91. 91.
    Thalhammer G, Winkler K, Lang F, Schmid S, Grimm R, Denschlag JH (2006) Long-lived Feshbach molecules in a three-dimensional optical lattice. Phys Rev Lett 96(050):402.  https://doi.org/10.1103/PhysRevLett.96.050402CrossRefGoogle Scholar
  92. 92.
    Toscano J, Tauschinsky A, Dulitz K, Rennick CJ, Heazlewood BR, Softley TP (2017) Zeeman deceleration beyond periodic phase space stability. New J Phys 19(8):083,016.  https://doi.org/10.1088/1367-2630/aa7ef5ADSCrossRefGoogle Scholar
  93. 93.
    Trimeche A, Bera MN, Cromières JP, Robert J, Vanhaecke N (2011) Trapping of a supersonic beam in a traveling magnetic wave. Eur Phys J D 65(1–2):263–271.  https://doi.org/10.1140/epjd/e2011-20096-1ADSCrossRefGoogle Scholar
  94. 94.
    Truppe S, Hendricks R, Tokunaga S, Lewandowski H, Kozlov M, Henkel C, Hinds E, Tarbutt M (2013) A search for varying fundamental constants using hertz-level frequency measurements of cold CH molecules. Nat Commun 4:2600.  https://doi.org/10.1038/ncomms3600ADSCrossRefGoogle Scholar
  95. 95.
    Truppe S, Hambach M, Skoff SM, Bulleid NE, Bumby JS, Hendricks RJ, Hinds EA, Sauer BE, Tarbutt MR (2017a) A buffer gas beam source for short, intense and slow molecular pulses. J Mod Opt 65(5–6):648–656.  https://doi.org/10.1080/09500340.2017.1384516ADSMathSciNetCrossRefGoogle Scholar
  96. 96.
    Truppe S, Williams HJ, Hambach M, Caldwell L, Fitch NJ, Hinds EA, Sauer BE, Tarbutt MR (2017b) Molecules cooled below the Doppler limit. Nat Phys 13(12):1173–1176.  https://doi.org/10.1038/nphys4241CrossRefGoogle Scholar
  97. 97.
    Vaidya VD, Tiamsuphat J, Rolston SL, Porto JV (2015) Degenerate Bose-Fermi mixtures of rubidium and ytterbium. Phys Rev A 92(043):604.  https://doi.org/10.1103/PhysRevA.92.043604CrossRefGoogle Scholar
  98. 98.
    Viteau M, Chotia A, Allegrini M, Bouloufa N, Dulieu O, Comparat D, Pillet P (2008) Optical pumping and vibrational cooling of molecules. Science 321(5886):232–234.  https://doi.org/10.1126/science.1159496ADSCrossRefGoogle Scholar
  99. 99.
    Witkowski M, Nagórny B, Munoz-Rodriguez R, Ciuryło R, Zuchowski PS, Bilicki S, Piotrowski M, Morzyński P, Zawada M (2017) Dual Hg-Rb magneto-optical trap. Opt Express 25(4):3165–3179.  https://doi.org/10.1364/OE.25.003165ADSCrossRefGoogle Scholar
  100. 100.
    Wu X, Gantner T, Koller M, Zeppenfeld M, Chervenkov S, Rempe G (2017) A cryofuge for cold-collision experiments with slow polar molecules. Science 358(6363):645–648.  https://doi.org/10.1126/science.aan3029ADSCrossRefGoogle Scholar
  101. 101.
    Yelin SF, Kirby K, Côté R (2006) Schemes for robust quantum computation with polar molecules. Phys Rev A 74(050):301.  https://doi.org/10.1103/PhysRevA.74.050301CrossRefGoogle Scholar
  102. 102.
    Zabawa P, Wakim A, Haruza M, Bigelow NP (2011) Formation of ultracold \({X}^{1}{\Sigma }^{+}(v^{^{\prime }}=0)\) NaCs molecules via coupled photoassociation channels. Phys Rev A 84(061):401.  https://doi.org/10.1103/PhysRevA.84.061401CrossRefGoogle Scholar
  103. 103.
    Zaccanti M, D’Errico C, Ferlaino F, Roati G, Inguscio M, Modugno G (2006) Control of the interaction in a Fermi-Bose mixture. Phys Rev A 74(4):041,605.  https://doi.org/10.1103/physreva.74.041605

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PhysicsDurham UniversityDurhamUK

Personalised recommendations