Skip to main content

Intuitive Reasoning in Formalized Mathematics with Elfe

  • Conference paper
  • First Online:
Computer Supported Education (CSEDU 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1022))

Included in the following conference series:

Abstract

In teaching mathematics, theorem provers have been used only seldomly due to their technical nature. Theorem provers like Elfe can bridge the gap between informal and formal reasoning by using automated theorem provers to verify intermediate steps in a proof that are passed over when reasoning intuitively. In this paper we present the inner workings of Elfe and how it can be used to prove lemmas in synthetic geometry. We compare the system to other approaches to formalized mathematics and give an outlook where the development may lead.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://elfe-prover.org.

  2. 2.

    https://github.com/maxdore/elfe.

  3. 3.

    http://geocoq.github.io/GeoCoq/.

References

  1. Gonthier, G.: Formal proof-the four-color theorem. Not. AMS 55, 1382–1393 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Verchinine, K., Lyaletski, A., Paskevich, A.: System for Automated Deduction (SAD): a tool for proof verification. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 398–403. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73595-3_29

    Chapter  MATH  Google Scholar 

  3. Doré, M., Broda, K.: The ELFE system - verifying mathematical proofs of undergraduate students. In: Proceedings of 10th CSEDU, vol. 2, pp. 15–26 (2018)

    Google Scholar 

  4. Sutcliffe, G.: The TPTP problem library and associated infrastructure: the FOF and CNF parts, v3.5.0. J. Autom. Reason. 43, 337–362 (2009)

    Article  Google Scholar 

  5. Weidenbach, C., Brahm, U., Hillenbrand, T., Keen, E., Theobald, C., Topić, D.: Spass version 2.0. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 275–279. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45620-1_22

    Chapter  Google Scholar 

  6. Schulz, S.: E - a Brainiac theorem prover. AI Commun. 15, 111–126 (2002)

    MATH  Google Scholar 

  7. Riazanov, A., Voronkov, A.: The design and implementation of Vampire. AI Commun. 15, 91–110 (2002)

    MATH  Google Scholar 

  8. Sutcliffe, G.: The CADE ATP system competition. AI Mag. 37, 99–101 (2016)

    Article  MathSciNet  Google Scholar 

  9. Baumgartner, P., Bax, J., Waldmann, U.: Beagle – a hierarchic superposition theorem prover. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 367–377. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21401-6_25

    Chapter  Google Scholar 

  10. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24

    Chapter  Google Scholar 

  11. Doré, M.: Elfe - an interactive theorem prover for undergraduate students. Bachelor thesis (2017)

    Google Scholar 

  12. Fitting, M.: First-Order Logic and Automated Theorem Proving, 2nd edn. Springer, New York (1990). https://doi.org/10.1007/978-1-4684-0357-2

    Book  MATH  Google Scholar 

  13. Tarski, A., Givant, S.: Tarski’s system of geometry. Bull. Symb. Logic 5, 175–214 (1999)

    Article  MathSciNet  Google Scholar 

  14. Narboux, J.: Mechanical theorem proving in Tarski’s geometry. In: Botana, F., Recio, T. (eds.) ADG 2006. LNCS (LNAI), vol. 4869, pp. 139–156. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77356-6_9

    Chapter  MATH  Google Scholar 

  15. Verchinine, K., Paskevich, A.: ForTheL-the language of formal theories. Int. J. Inf. Theor. Appl. 7, 120–126 (2000)

    Google Scholar 

  16. Cramer, M., Fisseni, B., Koepke, P., KĂ¼hlwein, D., Schröder, B., Veldman, J.: The Naproche project controlled natural language proof checking of mathematical texts. In: Fuchs, N.E. (ed.) CNL 2009. LNCS (LNAI), vol. 5972, pp. 170–186. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14418-9_11

    Chapter  Google Scholar 

  17. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: A Proof Assistant for Higher-Order Logic. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

    Book  MATH  Google Scholar 

  18. Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a practical link between automatic and interactive theorem provers. In: Proceedings of IJCAR 2010, pp. 1–10 (2010)

    Google Scholar 

  19. Bundy, A.: The automation of proof by mathematical induction. In: Handbook of Automated Reasoning (2001)

    Chapter  Google Scholar 

  20. BenzmĂ¼ller, C., Steen, A., Wisniewski, M.: Leo-III version 1.1 (system description). In: IWIL Workshop and LPAR Short Presentations, p. 16 (2017)

    Google Scholar 

  21. Brown, C.E.: Satallax: an automatic higher-order prover. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 111–117. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3_11

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Doré .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Doré, M., Broda, K. (2019). Intuitive Reasoning in Formalized Mathematics with Elfe. In: McLaren, B., Reilly, R., Zvacek, S., Uhomoibhi, J. (eds) Computer Supported Education. CSEDU 2018. Communications in Computer and Information Science, vol 1022. Springer, Cham. https://doi.org/10.1007/978-3-030-21151-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21151-6_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21150-9

  • Online ISBN: 978-3-030-21151-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics