Abstract
In teaching mathematics, theorem provers have been used only seldomly due to their technical nature. Theorem provers like Elfe can bridge the gap between informal and formal reasoning by using automated theorem provers to verify intermediate steps in a proof that are passed over when reasoning intuitively. In this paper we present the inner workings of Elfe and how it can be used to prove lemmas in synthetic geometry. We compare the system to other approaches to formalized mathematics and give an outlook where the development may lead.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Gonthier, G.: Formal proof-the four-color theorem. Not. AMS 55, 1382–1393 (2008)
Verchinine, K., Lyaletski, A., Paskevich, A.: System for Automated Deduction (SAD): a tool for proof verification. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 398–403. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73595-3_29
Doré, M., Broda, K.: The ELFE system - verifying mathematical proofs of undergraduate students. In: Proceedings of 10th CSEDU, vol. 2, pp. 15–26 (2018)
Sutcliffe, G.: The TPTP problem library and associated infrastructure: the FOF and CNF parts, v3.5.0. J. Autom. Reason. 43, 337–362 (2009)
Weidenbach, C., Brahm, U., Hillenbrand, T., Keen, E., Theobald, C., Topić, D.: Spass version 2.0. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 275–279. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45620-1_22
Schulz, S.: E - a Brainiac theorem prover. AI Commun. 15, 111–126 (2002)
Riazanov, A., Voronkov, A.: The design and implementation of Vampire. AI Commun. 15, 91–110 (2002)
Sutcliffe, G.: The CADE ATP system competition. AI Mag. 37, 99–101 (2016)
Baumgartner, P., Bax, J., Waldmann, U.: Beagle – a hierarchic superposition theorem prover. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 367–377. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21401-6_25
de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24
Doré, M.: Elfe - an interactive theorem prover for undergraduate students. Bachelor thesis (2017)
Fitting, M.: First-Order Logic and Automated Theorem Proving, 2nd edn. Springer, New York (1990). https://doi.org/10.1007/978-1-4684-0357-2
Tarski, A., Givant, S.: Tarski’s system of geometry. Bull. Symb. Logic 5, 175–214 (1999)
Narboux, J.: Mechanical theorem proving in Tarski’s geometry. In: Botana, F., Recio, T. (eds.) ADG 2006. LNCS (LNAI), vol. 4869, pp. 139–156. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77356-6_9
Verchinine, K., Paskevich, A.: ForTheL-the language of formal theories. Int. J. Inf. Theor. Appl. 7, 120–126 (2000)
Cramer, M., Fisseni, B., Koepke, P., KĂ¼hlwein, D., Schröder, B., Veldman, J.: The Naproche project controlled natural language proof checking of mathematical texts. In: Fuchs, N.E. (ed.) CNL 2009. LNCS (LNAI), vol. 5972, pp. 170–186. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14418-9_11
Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: A Proof Assistant for Higher-Order Logic. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9
Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a practical link between automatic and interactive theorem provers. In: Proceedings of IJCAR 2010, pp. 1–10 (2010)
Bundy, A.: The automation of proof by mathematical induction. In: Handbook of Automated Reasoning (2001)
BenzmĂ¼ller, C., Steen, A., Wisniewski, M.: Leo-III version 1.1 (system description). In: IWIL Workshop and LPAR Short Presentations, p. 16 (2017)
Brown, C.E.: Satallax: an automatic higher-order prover. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 111–117. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3_11
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Doré, M., Broda, K. (2019). Intuitive Reasoning in Formalized Mathematics with Elfe. In: McLaren, B., Reilly, R., Zvacek, S., Uhomoibhi, J. (eds) Computer Supported Education. CSEDU 2018. Communications in Computer and Information Science, vol 1022. Springer, Cham. https://doi.org/10.1007/978-3-030-21151-6_26
Download citation
DOI: https://doi.org/10.1007/978-3-030-21151-6_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-21150-9
Online ISBN: 978-3-030-21151-6
eBook Packages: Computer ScienceComputer Science (R0)