Convolutional Genetic Programming

  • Lino Rodriguez-CoayahuitlEmail author
  • Alicia Morales-Reyes
  • Hugo Jair Escalante
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11524)


In recent years Convolutional Neural Networks (CNN) have come to dominate many machine learning tasks, specially those related to image analysis, such as object recognition. Herein we explore the possibility of developing image denoising filters by stacking multiple Genetic Programming (GP) syntax trees, in a similar fashion to how CNNs are designed. We test the evolved filters performance in removing additive Gaussian noise. Results show that GP is able to generate a diverse set of feature maps at the ’hidden’ layers of the proposed architecture. Although more research is required to validate the suitability of GP for image denoising, our work set the basis for bridging the gap between deep learning and evolutionary computation.


Deep Genetic Programming Evolutionary machine learning Genetic Programming Image filtering Deep Learning 


  1. 1.
    Alpaydin, E.: Introduction to Machine Learning. MIT Press, Cambridge (2009)zbMATHGoogle Scholar
  2. 2.
    Axelrod, B.: Genetic programming (2007). Accessed 5 May 2017Google Scholar
  3. 3.
    Gathercole, C., Ross, P.: Tackling the boolean even N parity problem with genetic programming and limited-error fitness. Genet. Program. 97, 119–127 (1997)Google Scholar
  4. 4.
    Hernández-Beltrán, J.E., Díaz-Ramírez, V.H., Trujillo, L., Legrand, P.: Restoration of degraded images using genetic programming. In: Optics and Photonics for Information Processing X, vol. 9970 (2016)Google Scholar
  5. 5.
    Khmag, A., Ramli, A.R., Al-haddad, S., Yusoff, S., Kamarudin, N.: Denoising of natural images through robust wavelet thresholding and genetic programming. Vis. Comput. 33(9), 1141–1154 (2017)CrossRefGoogle Scholar
  6. 6.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by means of Natural Selection, vol. 1. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  7. 7.
    Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: NIPS (2012)Google Scholar
  8. 8.
    LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)CrossRefGoogle Scholar
  9. 9.
    LeCun, Y., Bengio, Y., et al.: Convolutional networks for images, speech, and time series. In: The Handbook of Brain Theory and Neural Networks, vol. 3361, no. 10 (1995)Google Scholar
  10. 10.
    Poli, R., Langdon, W.B., McPhee, N.F., Koza, J.R.: A field guide to genetic programming (2008).
  11. 11.
    Rodriguez-Coayahuitl, L., Morales-Reyes, A., Escalante, H.J.: Structurally layered representation learning: towards deep learning through genetic programming. In: Castelli, M., Sekanina, L., Zhang, M., Cagnoni, S., García-Sánchez, P. (eds.) EuroGP 2018. LNCS, vol. 10781, pp. 271–288. Springer, Cham (2018). Scholar
  12. 12.
    Roth, S., Black, M.J.: Fields of experts: a framework for learning image priors. In: Null, pp. 860–867. IEEE (2005)Google Scholar
  13. 13.
    Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of CVPR, pp. 1–9 (2015)Google Scholar
  14. 14.
    Tomassini, M.: Spatially Structured Evolutionary Algorithms: Artificial Evolution in Space and Time. Springer, Heidelberg (2006). Scholar
  15. 15.
    Tran, B., Xue, B., Zhang, M.: Using feature clustering for GP-based feature construction on high-dimensional data. In: McDermott, J., Castelli, M., Sekanina, L., Haasdijk, E., García-Sánchez, P. (eds.) EuroGP 2017. LNCS, vol. 10196, pp. 210–226. Springer, Cham (2017). Scholar
  16. 16.
    Yan, R., Shao, L., Liu, L., Liu, Y.: Natural image denoising using evolved local adaptive filters. Sig. Process. 103, 36–44 (2014)CrossRefGoogle Scholar
  17. 17.
    Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser: residual learning of deep CNN for image denoising. TIP 26(7), 3142–3155 (2017)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Instituto Nacional de Astrofísica, Óptica y ElectrónicaPueblaMexico

Personalised recommendations