Exploring the Use of Psycholinguistic Information in Author Profiling

  • Delia Irazú Hernández FaríasEmail author
  • Rosa María Ortega-Mendoza
  • Manuel Montes-y-Gómez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11524)


Identifying profile characteristics of the author of a given text is the aim of the Author Profiling (AP) task. In this paper, we explore the use of two well known psycholinguistic dictionaries, the Linguistic Inquirer and Word Count and the General Inquirer, with the objective to capture relevant information for recognizing the age and gender of the author of a given text. The contribution of this paper is two-fold. Firstly, we introduce the use of General Inquirer in the AP task. Secondly, we propose different text representations based on these dictionaries, which help to analyze their relevance and complementariness to accomplish author profiling. We experiment with benchmark corpora on AP. The obtained results are competitive with state-of-the-art, validating the usefulness of psycholinguistic information for recognizing profile attributes of authors.


Author Profiling Psycholinguistic dictionaries LIWC General Inquirer 



This research was funded by CONACYT (project FC 2016-2410 and postdoctoral fellowship CVU-174410).


  1. 1.
    Álvarez-Carmona, M.A., López-Monroy, A.P., Montes-y-Gómez, M., Villaseñor-Pineda, L., Meza, I.: Evaluating topic-based representations for author profiling in social media. In: Montes-y-Gómez, M., Escalante, H.J., Segura, A., Murillo, J.D. (eds.) IBERAMIA 2016. LNCS (LNAI), vol. 10022, pp. 151–162. Springer, Cham (2016). Scholar
  2. 2.
    Bartoli, A., De Lorenzo, A., Laderchi, A., Medvet, E., Tarlao, F.: An author profiling approach based on language-dependent content and stylometric features. In: 2015 Labs and Workshops, Notebook Papers. CEUR Workshop Proceedings (2015)Google Scholar
  3. 3.
    Basile, A., Dwyer, G., Medvedeva, M., Rawee, J., Haagsma, H., Nissim, M.: N-GrAM: new groningen author-profiling model. CoRR abs/1707.03764 (2017)Google Scholar
  4. 4.
    Bayot, R.K., Gonçalves, T.: Author profiling using SVMs and word embedding averages. In: Working Notes of CLEF 2016 - Conference and Labs of the Evaluation forum, Évora, Portugal, 5–8 September 2016, pp. 815–823 (2016)Google Scholar
  5. 5.
    Marquardt, J., et al.: Age and gender identification in social media. In: 2014 Labs and Workshops, Notebook Papers. CEUR Workshop Proceedings (2014)Google Scholar
  6. 6.
    Ortega-Mendoza, R.M., López-Monroy, A.P., Franco-Arcega, A., Montes-y-Gómez, M.: Emphasizing personal information for author profiling: new approaches for term selection and weighting. Knowl.-Based Syst. 145, 169–181 (2018)CrossRefGoogle Scholar
  7. 7.
    Pardo, F.M.R., et al.: Overview of the author profiling task at PAN 2014. In: Working Notes for CLEF 2014 Conference, pp. 898–927 (2014)Google Scholar
  8. 8.
    Pardo, F.M.R., Rosso, P., Potthast, M., Stein, B.: Overview of the 5th author profiling task at PAN 2017: gender and language variety identification in Twitter. In: Working Notes of CLEF - Conference and Labs of the Evaluation Forum (2017)Google Scholar
  9. 9.
    Pennebaker, J.W., Francis, M.E., Booth, R.J.: Linguistic Inquiry and Word Count: LIWC 2001, vol. 71. Lawrence Erlbaum Associates, Mahway (2001)Google Scholar
  10. 10.
    Posadas-Durán, J.P., et al.: Syntactic N-grams as features for the author profiling task: notebook for PAN at CLEF 2015. In: CLEF (2015)Google Scholar
  11. 11.
    Stone, P.J., Hunt, E.B.: A computer approach to content analysis: studies using the general inquirer system. In: Proceedings of the May 21–23, 1963, Spring Joint Computer Conference, AFIPS 1963 (Spring), pp. 241–256. ACM (1963)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Delia Irazú Hernández Farías
    • 1
    Email author
  • Rosa María Ortega-Mendoza
    • 1
  • Manuel Montes-y-Gómez
    • 1
  1. 1.Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE)PueblaMexico

Personalised recommendations