Modeling of a Simplified 2D Cardiac Valve by Means of System Identification

  • Carlos Duran-HernandezEmail author
  • Rogelio Perez-Santiago
  • Gibran Etcheverry
  • Rene Ledesma-Alonso
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11524)


The function of a heart valve is to maintain the correct circulation of blood from the heart to the entire Cardiovascular System (CVS). The CVS has become a main target in the health science and engineering, due to the importance of the detection anomalies or pathologies. Some techniques that deal with these problems, like Magnetic Resonance Imaging (MRI), Ultrasound and Electrocardiography (ECG) among them, require important investments to acquire measurement instruments. Numerical simulations have arisen as an alternative, by means of Fluid-Structure Interaction (FSI) analysis. The combination of computational methods, such as Finite Element Method (FEM) and Incompressible Computational Fluid Dynamics (ICFD), have allowed the development of FSI software, which leads to design versatility and economic advantages. However, computational time is high even for simplified designs. Lumped models appear as another solution. They consist in simplified zero-dimensional models that allow to mimic the Cardiovascular System (CVS) with low computational cost and good approximations. Nevertheless, they require a parameter identification and the calculation process for each scenario, which becomes increasingly complicated when the number of parameters is high. Therefore, an alternative approach is proposed in the present manuscript. Taking the volumetric flow rate and the Pressure Difference (PD) as the input and output parameters, respectively, of the flow across a heart valve of simple geometry, a System Identification (SI) is performed. The proposed methodology requires low computational cost and provides a good approximation. Results obtained guarantee a 99.76% of goodness of fit.


Cardiac valves Cardiovascular System Fluid-Structure Interaction ARMAX System identification 


  1. 1.
    Baccani, B., Domenichini, F., Pedrizzetti, G.: Model and influence of mitral valve opening during the left ventricular filling. J. Biomech. 36(3), 355–361 (2003)CrossRefGoogle Scholar
  2. 2.
    Bluestein, D., Li, Y., Krukenkamp, I.: Free emboli formation in the wake of bi-leaflet mechanical heart valves and the effects of implantation techniques. J. biomech. 35(12), 1533–1540 (2002)CrossRefGoogle Scholar
  3. 3.
    Catanho, M., Sinha, M., Vijayan, V.: Model of aortic blood flow using the windkessel effect. University of California of San Diago, San Diago (2012)Google Scholar
  4. 4.
    De Hart, J., Peters, G., Schreurs, P., Baaijens, F.: A three-dimensional computational analysis of fluid-structure interaction in the aortic valve. J. Biomech. 36(1), 103–112 (2003)CrossRefGoogle Scholar
  5. 5.
    De Hart, J., Peters, G.W., Schreurs, P.J., Baaijens, F.P.: A two-dimensional fluid-structure interaction model of the aortic value. J. Biomech. 33(9), 1079–1088 (2000)CrossRefGoogle Scholar
  6. 6.
    Horsten, J.B.A.M.: On the analysis of moving heart valves: a numerical fluid-structure interaction model. Ph.D. thesis, Technische Universiteit Eindhoven (1990)Google Scholar
  7. 7.
    Huang, H., Shu, Z., Song, B., Ji, L., Zhu, N.: Modeling left ventricular dynamics using a switched system approach based on a modified atrioventricular piston unit. Med. Eng. Phys. 63, 42–49 (2019)CrossRefGoogle Scholar
  8. 8.
    Khalili, F., Gamage, P.T., Mansy, H.: Prediction of turbulent shear stresses through dysfunctional bileaflet mechanical heart valves using computational fluid dynamics. arXiv preprint arXiv:1803.03361 (2018)
  9. 9.
    King, M., Corden, J., David, T., Fisher, J.: A three-dimensional, time-dependent analysis of flow through a bileaflet mechanical heart valve: comparison of experimental and numerical results. J. Biomech. 29(5), 609–618 (1996)CrossRefGoogle Scholar
  10. 10.
    Krafczyk, M., Cerrolaza, M., Schulz, M., Rank, E.: Analysis of 3D transient blood flow passing through an artificial aortic valve by lattice-boltzmann methods. J. Biomech. 31(5), 453–462 (1998)CrossRefGoogle Scholar
  11. 11.
    Ledesma-Alonso, R., Guzmán, J., Zenit, R.: Experimental study of a model valve with flexible leaflets in a pulsatile flow. J. Fluid Mech. 739, 338–362 (2014)CrossRefGoogle Scholar
  12. 12.
    Lemmon, J.D., Yoganathan, A.P.: Three-dimensional computational model of left heart diastolic function with fluid-structure interaction. J. Biomech. Eng. 122(2), 109–117 (2000)CrossRefGoogle Scholar
  13. 13.
    Ljung, L.: System Identification: Theory for the User. Prentice-Hall, Upper Saddle River (1987)zbMATHGoogle Scholar
  14. 14.
    López-Zazueta, A., Ledesma-Alonso, R., Guzman, J., Zenit, R.: Study of the velocity and strain fields in the flow through prosthetic heart valves. J. Biomech. Eng. 133(12), 121003 (2011)CrossRefGoogle Scholar
  15. 15.
    Monin, A.: Armax identification via hereditary algorithm. IEEE Trans. Autom. Control 49(2), 233–238 (2004)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Monin, A., Salut, G.: Arma lattice identification: a new hereditary algorithm. IEEE Trans. Signal Process. 44(2), 360–370 (1996)CrossRefGoogle Scholar
  17. 17.
    Pant, S., Corsini, C., Baker, C., Hsia, T.Y., Pennati, G., Vignon-Clementel, I.E., of Congenital Hearts Alliance (MOCHA) Investigators, M., et al.: Data assimilation and modelling of patient-specific single-ventricle physiology with and without valve regurgitation. J. Biomech. 49(11), 2162–2173 (2016)Google Scholar
  18. 18.
    Peña Pérez, N.: Windkessel modeling of the human arterial system. B.S. thesis, Universidad Carlos III de Madrid (2016)Google Scholar
  19. 19.
    Peskin, C.S.: Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10(2), 252–271 (1972)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Pironet, A., Dauby, P.C., Chase, J.G., Docherty, P.D., Revie, J.A., Desaive, T.: Structural identifiability analysis of a cardiovascular system model. Med. Eng. Phys. 38(5), 433–441 (2016)CrossRefGoogle Scholar
  21. 21.
    Stijnen, J., De Hart, J., Bovendeerd, P., Van de Vosse, F.: Evaluation of a fictitious domain method for predicting dynamic response of mechanical heart valves. J. Fluids Struct. 19(6), 835–850 (2004)CrossRefGoogle Scholar
  22. 22.
    Wang, Z., Yuan, Q., Shen, B., Tang, D., Zhang, X.: Mathmatic abstraction for fluid-structure interaction analysis of bioprosthetic heart valves with immersed boundary method. DEStech Trans. Eng. Technol. Res. (mcemic) (2016). ISBN: 978-1-60595-352-6Google Scholar
  23. 23.
    Westerhof, N., Lankhaar, J.W., Westerhof, B.E.: The arterial windkessel. Med. Biol. Eng. Comput. 47(2), 131–141 (2009)CrossRefGoogle Scholar
  24. 24.
    Xu, P., et al.: Assessment of boundary conditions for CFD simulation in human carotid artery. Biomech. Model. Mechanobiol. 17(6), 1581–1597 (2018)CrossRefGoogle Scholar
  25. 25.
    Yoganathan, A.P., He, Z., Casey Jones, S.: Fluid mechanics of heart valves. Annu. Rev. Biomed. Eng. 6, 331–362 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Universidad de las Americas PueblaPueblaMexico

Personalised recommendations