Advertisement

Analytical Hierarchy Process Based Model for Safety Assessment of Coastal Touristic Locations

  • Alberto Daniel Dávila–LamasEmail author
  • José J. Carbajal–Hernández
  • Luis P. Sánchez–Fernández
  • César A. Hoil–Rosas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11524)

Abstract

Touristic Mexican beaches are highly visited places where safety is one of the most important priorities. In this work, a computational model based on the Analytical Hierarchy Process is proposed to evaluate main coastal characteristics, providing a safety index score. Parameters such as: wind, tide, temperature and bathymetry are studied using an importance weighment procedure. Beaches located at La Paz, South Baja California, Mexico are measured, and assessed to show the proposed model performance, providing a good alternative to impulse tourism.

Keywords

Analytical Hierarchy Process Signal processing Tourism Safety Beach 

References

  1. 1.
    Banco de México: Extracto del Reporte sobre las Economías Regionales Enero – Marzo, pp. 10–13 (2018). http://www.banxico.org.mx/
  2. 2.
    Leatherman, S.P.: Beach rating: a methodological approach. J. Coast. Res. 253–258 (1997)Google Scholar
  3. 3.
    Leopold, L.B.: Quantitative Comparison of Some Aesthetic Factors Among Rivers, vol. 620. US Geological Survey (1969)Google Scholar
  4. 4.
    Micallef, A., Williams, A.T., Gallego Fernandez, J.B.: Bathing area quality and landscape evaluation on the Mediterranean coast of Andalucia, Spain. J. Coast. Res. 87–95 (2011)Google Scholar
  5. 5.
    Ergin, A., Karaesmen, E., Micallef, A., Williams, A.T.: A new methodology for evaluating coastal scenery: fuzzy logic systems. Area 36(4), 367–386 (2004)CrossRefGoogle Scholar
  6. 6.
    Ergin, A., Özölçer, İ.H., Şahin, F.: Evaluating coastal scenery using fuzzy logic: application at selected sites in Western Black Sea coastal region of Turkey. Ocean Eng. 37(7), 583–591 (2010)CrossRefGoogle Scholar
  7. 7.
    Urcádiz-Cázares, F.J., Cruz-Escalona, V.H., Nava-Sánchez, E.H., Ortega-Rubio, A.: Clasificación de unidades del fondo marino a partir de la distribución espacial de los sedimentos superficiales de la Bahía de La Paz, Golfo de California. Hidrobiológica 27(3), 399–409 (2017)CrossRefGoogle Scholar
  8. 8.
    Del Monte-Luna, P., Arreguín-Sánchez, F., Godínez-Orta, L., López-Ferreira, C.A.: Batimetría actualizada de la Bahía de La Paz, Baja California Sur, México. CICIMAR Oceánides 20(1–2), 75–77 (2005)Google Scholar
  9. 9.
    Castelle, B., Scott, T., Brander, R.W., McCarroll, R.J.: Rip current types, circulation and hazard. Earth Sci. Rev. 163, 1–21 (2016)CrossRefGoogle Scholar
  10. 10.
    Drozdzewski, D., et al.: Surveying rip current survivors: preliminary insights into the experiences of being caught in rip currents. Nat. Hazards Earth Syst. Sci. 12(4), 1201–1211 (2012)CrossRefGoogle Scholar
  11. 11.
    Drozdzewski, D., Roberts, A., Dominey-Howes, D., Brander, R.: The experiences of weak and non-swimmers caught in rip currents at Australian beaches. Aust. Geogr. 46(1), 15–32 (2015)CrossRefGoogle Scholar
  12. 12.
    Alonso Rodríguez, R.: Hidrología y condiciones ambientales que determinan la proliferación de dinoflagelados causantes de marea roja en la Bahía de Mazatlán, Sin., México (2004)Google Scholar
  13. 13.
    Rodríguez, L.: Revisión del fenómeno de Marea Roja en Chile. Rev. Biol. Mar. 21, 173–197 (1985)Google Scholar
  14. 14.
    Kim, D.I., et al.: Effects of temperature, salinity and irradiance on the growth of the harmful red tide dinoflagellate Cochlodinium polykrikoides Margalef (Dinophyceae). J. Plankton Res. 26(1), 61–66 (2004)CrossRefGoogle Scholar
  15. 15.
    Gutiérrez, J.D., Riss, W., Ospina, R.: Lógica Difusa como herramienta para la bioindicación de la calidad del agua con macroinvertebrados acuáticos en la sabana de Bogotá -Colombia/Application of fuzzy logic as bioindication tool for the water quality with aquatic macroinvertebrates in the Sabana de Bogotá-Colombia. Caldasia 161–172 (2004)Google Scholar
  16. 16.
    Saaty, T.L.: Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 1(1), 83–98 (2008)MathSciNetGoogle Scholar
  17. 17.
    Perron, O.: Grundlagen f¨ur eine Theorie des Jacobischen Kettenbruchalgorithmus. Math. Ann. 64, 11–76 (1907)Google Scholar
  18. 18.
    Saaty, T.L.: Decision making—the analytic hierarchy and network processes (AHP/ANP). J. Syst. Sci. Syst. Eng. 13(1), 1–35 (2004)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alberto Daniel Dávila–Lamas
    • 1
    Email author
  • José J. Carbajal–Hernández
    • 1
  • Luis P. Sánchez–Fernández
    • 1
  • César A. Hoil–Rosas
    • 1
  1. 1.Centro de Investigación en ComputaciónInstituto Politécnico NacionalCiudad de MéxicoMexico

Personalised recommendations