Inference Algorithm with Falsifying Patterns for Belief Revision

  • P. BelloEmail author
  • G. De Ita
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11524)


Let K be a Knowledge Base (KB) and let \(\phi \) be a query, the entailment problem \(K \models \phi \) is crucial for solving the Belief Revision problem. The Belief Revision problem consists in incorporate new beliefs into knowledge base already established, changing as little as possible the original beliefs and maintaining consistency of the KB. A widely accepted framework for reasoning through intelligent systems is the knowledge-based system approach. The general idea is to keep the knowledge in some representative language with a well-defined connotation, particularly it we will be used prepositional logic for modelling the knowledge base and the new information.

This article shows that the use of falsifying patterns for expressing clauses help to determine whether an conjunctive normal form (CNF) is inferred from another CNF, and therefore, it allows us to construct an algorithm for belief revision between CNF’s.

Our algorithm applies a depth first search in order to obtain an effective process for the belief revision between the conjuntive forms K and \(\phi \).


Belief revision Propositional inference Falsifying patterns 


  1. 1.
    Belov, A., Janota, M., Lynce, I., Marques-Silva, J.: Algorithms for computing minimal equivalent subformulas. Artif. Intell. 266, 309–326 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Darwiche, A.: On tractable counting of theory models and its application to truth maintenance and belief revision. Appl. NonClassical Logics 11, 11–34 (2001)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Herzig, A., Lang, J., Marquis, P.: Propositional update operators based on formula/literal dependence. ACM Trans. Comput. Logic 14, 1–31 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Selman, B.: Tractable default reasoning. Ph.D. dissertation, Department of Computer Science University of Toronto (1990)Google Scholar
  5. 5.
    Alchourrón, C., Gärdenfors, P., Makinson, D.: On the logic of theory change: partialmeet contraction and revision functions. J. Symbolic Logic 50, 510–530 (1985)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Pons, C., Rosenfeld, R., Smith, C.: Łógica para informática, Buenos Aires, Argentina: Universidad Nacional de La Plata, Ed. Universidad de La Plata (2017)Google Scholar
  7. 7.
    Jiang, D., Li, W., Lou, J., Lou, Y., Lia, Z.: A decomposition based algorithm for maximal contractions. J. Front. Comput. Sci. 7, 801–811 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cresto, E.: Revisón de creencias y racionalidad. Cuadernos del CIMBAGE 5, 133–156 (2002)Google Scholar
  9. 9.
    Boella, G., Pigozzi, G., Van der Torre, L.: AGM contraction and revision of rules. J. Logic Lang. Inf. 25, 273–297 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    De Ita, G., Marcial, R., Bello, P., Contreras, M.: Belief revisions between conjunctive normal forms. J. Intell. Fuzzy Syst. 34, 3155–3164 (2018)CrossRefGoogle Scholar
  11. 11.
    Katsuno, H., Mendelzon, A.: On the difference between updating a knowledge base and revising it. In: KR 1991, Cambridge, MA, USA, pp. 387–394 (1991)Google Scholar
  12. 12.
    Delgrande, J., Jin, Y., Pelletier, F.J.: Compositional belief update. J. Artif. Intell. Res. 32, 757–791 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Aiguier, M., Atif, J., Bloch, I., Hudelot, C.: Belief revision, minimal change and relaxation: a general framework based on satisfaction systems, and applications to description logics. Artif. Intell. 256, 160–180 (2018)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Cadoli, M., Donini, F.M., Liberatore, P., Schaerf, M.: Preprocessing of intractable problems. Inf. Comput. 176, 89–120 (2002)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Rúa, M.G., Sierra, A.M.: Algunas lógicas modales asociadas al razonamiento de agentes inteligentes. Ingeniería y Ciencia 4, 23–45 (2008)Google Scholar
  16. 16.
    Korpusik, M., Lukaszewicz, W., Madalińska-Bugaj, E.: Consistency-based revision of structured belief bases. Fundamenta Informaticae 136, 381–404 (2015)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Creignou, N., Ktari, R., Papini, O.: Belief update within propositional fragments. J. Artif. Intell. Res. 61, 807–834 (2018)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Doubois, O.: Counting the number of solutions for instances of satisfiability. Theor. Comput. Sci. 81, 49–64 (1991)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Liberatore, P.: The complexity of iterated belief revision. In: Afrati, F., Kolaitis, P. (eds.) ICDT 1997. LNCS, vol. 1186, pp. 276–290. Springer, Heidelberg (1997). Scholar
  20. 20.
    Liberatore, P.: Revision by history. J. Artif. Intell. Res. 52, 287–329 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Peppasa, P., Willians, M.A., Choprac, S., Foo, N.: Relevance in belief revision. Artif. Intell. 229, 126–138 (2015)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Pozos-Parra, P., Chávez-Bosquez, O., McAreavey, K.: A belief merging tool for consensus support. J. Intell. Fuzzy Syst. 34, 3199–3210 (2018)CrossRefGoogle Scholar
  23. 23.
    Booth, R., Hunter, A.: Trust as a precursor to belief revision. J. Artif. Intell. Res. 61, 699–722 (2018)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Khardon, R., Roth, D.: Reasoning with models. Artif. Intell. 87, 187–213 (1996)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Language & Knowledge Engineering Lab. (LKE), Faculty of Computer ScienceBenemérita Universidad Autónoma de PueblaPueblaMexico

Personalised recommendations