Recognizing 3-colorable Basic Patterns on Planar Graphs

  • Guillermo De Ita LunaEmail author
  • Cristina López-Ramírez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11524)


We recognize the wheel graphs with different kinds of centers or axle faces as the basic pattern forming a planar graph. We focus on the analysis of the vertex-coloring for these graphic patterns, and identify cases for the 3 or 4 colorability of the wheels. We also consider different compositions among wheels and analyze its colorability process.

If a valid 3-coloring exists for the union of wheels G, then our proposal determines the constraints that a set of symbolic variables must hold. These constraints are expressed by a conjunctive normal form \(F_G\). We show that the satisfiability of \(F_G\) implies the existence of a valid 3-coloring for G. Otherwise, it is necessary to use 4 colors in order to properly color G. The revision of the satisfiability of \(F_G\) can be done in polynomial time by applying unit resolution and general properties from equalities and inequalities between symbolic variables.


Wheel graphs Polyhedral wheel graphs Planar graphs Vertex coloring 


  1. 1.
    Cortese, P., Patrignani, M.: Planarity Testing and Embedding. Press LLC (2004)Google Scholar
  2. 2.
    Dvorák, Z., Král, D., Thomas, R.: Three-coloring triangle-free graphs on surfaces. In: Proceedings of the 20th ACM-SIAM Symposium on Discrete Algorithms, pp. 120–129 (2009)Google Scholar
  3. 3.
    Grötzsch, H.: Ein Dreifarbensatz fr dreikreisfreie Netze auf der Kugel, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe, vol. 8, pp. 109–120 (1959)Google Scholar
  4. 4.
    Johnson, D.: The NP-completeness column: an ongoing guide. J. Algorithms 6, 434–451 (1985)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Kuratowski, K.: Sur le probleme des courbes gauches en topologie. Fund. Math. 15, 271–283 (1930)CrossRefGoogle Scholar
  6. 6.
    López-Ramírez, C., De Ita, G., Neri, A.: Modelling 3-coloring of polygonal trees via incremental satisfiability. In: Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Olvera-López, J.A., Sarkar, S. (eds.) MCPR 2018. LNCS, vol. 10880, pp. 93–102. Springer, Cham (2018). Scholar
  7. 7.
    Mertzios, G.B., Spirakis, P.G.: Algorithms and almost tight results for 3-colorability of small diameter graphs, Technical report (2012).
  8. 8.
    Nishizeki, T., Chiba, N.: Planar Graphs: Theory and Algoritms, vol. 32, pp. 83–87. Elsevier, Amsterdam (1988)zbMATHGoogle Scholar
  9. 9.
    Robertson, N., Sanders, D.P., Seymour, P.D., Thomas, R.: The four color theorem. J. Combin. Theory Ser. B 70, 2–4 (1997)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Stacho, J.: 3-colouring AT-free graphs in polynomial time. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010. LNCS, vol. 6507, pp. 144–155. Springer, Heidelberg (2010). Scholar
  11. 11.
    Wagner, K.: Über eine Eigenschaft der ebenen Komplexe. Mathematische Annalen 114, 570–590 (1937)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Guillermo De Ita Luna
    • 1
    Email author
  • Cristina López-Ramírez
    • 1
  1. 1.Fac. Cs. de la ComputaciónUniversidad Autónoma de PueblaPueblaMexico

Personalised recommendations