On the Use of Constructs for Rule-Based Classification: A Case Study

  • Manuel S. Lazo-CortésEmail author
  • José Fco. Martínez-Trinidad
  • Jesús A. Carrasco-Ochoa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11524)


In Rough Set Theory, super-reducts are subsets of attributes that retain the ability of the whole set of attributes to discern objects belonging to different classes; reducts are minimal ones. On the other hand, constructs also allow discerning objects belonging to different classes but, at the same time, they retain similarities between objects belonging to the same. Therefore, constructs are a kind of super-reducts in whose definition inter-class and intra-class information is combined. This type of super-reduct has been little studied. In this paper, we present a case study, about the use of constructs instead of reducts for building decision rules useful for rule-based classification. Our results show the practical utility of constructs for rule based classification.


  1. 1.
    Bache, K., Lichman, M.: UCI machine learning repository. University of California, School of Information and Computer Science, Irvine, CA (2013).
  2. 2.
    Barman, T., Rajesh, G., Archana, R.: Rough set based segmentation and classification model for ECG. In: Conference on Advances in Signal Processing (CASP), pp. 18–23. IEEE (2016)Google Scholar
  3. 3.
    Bazan, J.G., Szczuka, M.: The rough set exploration system. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets III. LNCS, vol. 3400, pp. 37–56. Springer, Heidelberg (2005). Scholar
  4. 4.
    Cohen, W.W.: Fast effective rule induction. In: Proceedings of the Twelfth International Conference on Machine Learning, Lake Tahoe California, USA, pp. 1–10 (1995)Google Scholar
  5. 5.
    Cohen, W.W., Singer, Y.: A simple, fast, and effective rule learner. In: Proceedings of the Sixteenth National Conference on Artificial Intelligence, Orlando Florida, USA, pp. 335–342 (1999)Google Scholar
  6. 6.
    Lazo-Cortés, M.S., Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Sanchez-Diaz, G.: Computing constructs by using typical testor algorithms. In: Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Sossa-Azuela, J.H., Olvera López, J.A., Famili, F. (eds.) MCPR 2015. LNCS, vol. 9116, pp. 44–53. Springer, Cham (2015). Scholar
  7. 7.
    Lazo-Cortés, M.S., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A.: Class-specific reducts vs. classic reducts in a rule-based classifier: a case study. In: Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Olvera-López, J.A., Sarkar, S. (eds.) MCPR 2018. LNCS, vol. 10880, pp. 23–30. Springer, Cham (2018). Scholar
  8. 8.
    Miao, D.Q., Zhao, Y., Yao, Y.Y., Li, H.X., Xu, F.F.: Reducts in consistent and inconsistent decision tables of the Pawlak rough set model. Inf. Sci. 179(24), 4140–4150 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)CrossRefGoogle Scholar
  10. 10.
    Pawlak, Z.: Rough sets. In: Theoretical Aspects of Reasoning About Data, pp. 315–330. Kluwer Academic Publishers, Dordrecht (1992)Google Scholar
  11. 11.
    Rana, H., Lal, M.: A rough set theory approach for rule generation and validation using RSES. Int. J. Rough Sets Data Anal. 3(1), 55–70 (2016)CrossRefGoogle Scholar
  12. 12.
    Rana, H., Lal, M.: A comparative study based on rough set and classification via clustering approaches to handle incomplete data to predict learning styles. Int. J. Decis. Support Syst. Technol. 9(2), 1–20 (2017)CrossRefGoogle Scholar
  13. 13.
    Sanchez-Diaz, G., Lazo-Cortes, M., Piza-Davila, I.: A fast implementation for the typical testor property identification based on an accumulative binary tuple. Int. J. Comput. Intell. Syst. 5(6), 1025–1039 (2012)CrossRefGoogle Scholar
  14. 14.
    Skowron, A., Bazan, J., Szczuka, M., Wroblewski, J.: Rough set exploration system (version 2.2.2).
  15. 15.
    Susmaga, R.: Reducts versus constructs: an experimental evaluation. Electron. Notes Theor. Comput. Sci. 82(4), 239–250 (2003)CrossRefGoogle Scholar
  16. 16.
    Triguero, I., et al.: KEEL 3.0: an open source software for multi-stage analysis in data mining. Int. J. Comput. Intell. Syst. 10, 1238–1249 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Manuel S. Lazo-Cortés
    • 1
    • 2
    Email author
  • José Fco. Martínez-Trinidad
    • 1
  • Jesús A. Carrasco-Ochoa
    • 1
  1. 1.Instituto Nacional de Astrofísica, Óptica y ElectrónicaPueblaMexico
  2. 2.SEP/SES/TecNM/Instituto Tecnológico de TlalnepantlaTlalnepantla de BazMexico

Personalised recommendations