Advertisement

The Mexican Conference on Pattern Recognition After Ten Editions: A Scientometric Study

  • Octavio Loyola-GonzálezEmail author
  • Miguel Angel Medina-Pérez
  • José Fco. Martínez-Trinidad
  • Jesús Ariel Carrasco-Ochoa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11524)

Abstract

Scientific conferences are suitable vehicles for knowledge dissemination, connecting authors, networking, and research entities. However, it is important to know the impact of a determined conference for the international research community. The main way to do this is through a scientometric study of those papers derived from the conference. Therefore, in this paper, we introduce a scientometric study taking into account all papers published in each edition of the Mexican Conference on Pattern Recognition (MCRP) as well as all the papers published in special issues derived from MCPR. Our study is based on data taken from the SCOPUS database. We have extracted and analyzed several essential keys, such as acceptance and rejection rates, number of authors and top-productive institutions, and frequency of citations by other journals, with the aim of providing the impact of the papers derived from MCPR for the international research community. From our study, we report some important findings about the impact of the MCPR conference after ten editions.

Keywords

MCPR Scientometrics Information extraction 

References

  1. 1.
    Cantoni, V., Galdi, C., Nappi, M., Porta, M., Riccio, D.: GANT: gaze analysis technique for human identification. Pattern Recogn. 48(4), 1027–1038 (2015)CrossRefGoogle Scholar
  2. 2.
    Chacon-Murguia, M.I., Perez-Vargas, F.J.: Thermal video analysis for fire detection using shape regularity and intensity saturation features. In: Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Ben-Youssef Brants, C., Hancock, E.R. (eds.) MCPR 2011. LNCS, vol. 6718, pp. 118–126. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21587-2_13CrossRefGoogle Scholar
  3. 3.
    Coello Coello, C.A.: Evolutionary multi-objective optimization: basic concepts and some applications in pattern recognition. In: Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Ben-Youssef Brants, C., Hancock, E.R. (eds.) MCPR 2011. LNCS, vol. 6718, pp. 22–33. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21587-2_3CrossRefGoogle Scholar
  4. 4.
    Cruz-Perez, C., Starostenko, O., Uceda-Ponga, F., Alarcon-Aquino, V., Reyes-Cabrera, L.: Breaking reCAPTCHAs with unpredictable collapse: heuristic character segmentation and recognition. In: Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Olvera López, J.A., Boyer, K.L. (eds.) MCPR 2012. LNCS, vol. 7329, pp. 155–165. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31149-9_16CrossRefGoogle Scholar
  5. 5.
    Farinella, G., Ravì, D., Tomaselli, V., Guarnera, M., Battiato, S.: Representing scenes for real-time context classification on mobile devices. Pattern Recogn. 48(4), 1086–1100 (2015)CrossRefGoogle Scholar
  6. 6.
    Flores, W.G., de Albuquerque Pereira, W.C., Infantosi, A.F.C.: Improving classification performance of breast lesions on ultrasonography. Pattern Recogn. 48(4), 1125–1136 (2015)CrossRefGoogle Scholar
  7. 7.
    Galdi, C., Nappi, M., Riccio, D., Cantoni, V., Porta, M.: A new gaze analysis based soft-biometric. In: Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Rodríguez, J.S., di Baja, G.S. (eds.) MCPR 2013. LNCS, vol. 7914, pp. 136–144. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38989-4_14CrossRefGoogle Scholar
  8. 8.
    García-Moreno, A.-I., Gonzalez-Barbosa, J.-J., Ornelas-Rodriguez, F.-J., Hurtado-Ramos, J.B., Primo-Fuentes, M.-N.: LIDAR and panoramic camera extrinsic calibration approach using a pattern plane. In: Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Rodríguez, J.S., di Baja, G.S. (eds.) MCPR 2013. LNCS, vol. 7914, pp. 104–113. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38989-4_11CrossRefGoogle Scholar
  9. 9.
    Gragnaniello, D., Poggi, G., Sansone, C., Verdoliva, L.: Local contrast phase descriptor for fingerprint liveness detection. Pattern Recogn. 48(4), 1050–1058 (2015)CrossRefGoogle Scholar
  10. 10.
    Hood, W., Wilson, C.: The literature of bibliometrics, scientometrics, and informetrics. Scientometrics 52(2), 291–314 (2001)CrossRefGoogle Scholar
  11. 11.
    Kawulok, M., Kawulok, J., Nalepa, J.: Spatial-based skin detection using discriminative skin-presence features. Pattern Recogn. Lett. 41, 3–13 (2014). Supervised and Unsupervised Classification Techniques and Their ApplicationsCrossRefGoogle Scholar
  12. 12.
    Koprowski, R., Wrobel, Z., Zieleznik, W.: Automatic ultrasound image analysis in Hashimoto’s disease. In: Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Kittler, J. (eds.) MCPR 2010. LNCS, vol. 6256, pp. 98–106. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15992-3_11CrossRefGoogle Scholar
  13. 13.
    Martínez-Díaz, Y., Hernández, N., Biscay, R.J., Chang, L., Méndez-Vázquez, H., Sucar, L.E.: On fisher vector encoding of binary features for video face recognition. J. Vis. Commun. Image Represent. 51, 155–161 (2018)CrossRefGoogle Scholar
  14. 14.
    Mújica-Vargas, D., Gallegos-Funes, F.J., Rosales-Silva, A.J.: A fuzzy clustering algorithm with spatial robust estimation constraint for noisy color image segmentation. Pattern Recogn. Lett. 34(4), 400–413 (2013). Advances in Pattern Recognition Methodology and ApplicationsCrossRefGoogle Scholar
  15. 15.
    Pisoschi, A.M., Pisoschi, C.G.: Is open access the solution to increase the impact of scientific journals? Scientometrics 109(2), 1075–1095 (2016)CrossRefGoogle Scholar
  16. 16.
    Poria, S., Gelbukh, A., Hussain, A., Bandyopadhyay, S., Howard, N.: Music genre classification: a semi-supervised approach. In: Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Rodríguez, J.S., di Baja, G.S. (eds.) MCPR 2013. LNCS, vol. 7914, pp. 254–263. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38989-4_26CrossRefGoogle Scholar
  17. 17.
    Rosales-Pérez, A., Reyes-García, C.A., Gómez-Gil, P.: Genetic fuzzy relational neural network for infant cry classification. In: Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Ben-Youssef Brants, C., Hancock, E.R. (eds.) MCPR 2011. LNCS, vol. 6718, pp. 288–296. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21587-2_31CrossRefGoogle Scholar
  18. 18.
    Salas, J., Tomasi, C.: People detection using color and depth images. In: Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Ben-Youssef Brants, C., Hancock, E.R. (eds.) MCPR 2011. LNCS, vol. 6718, pp. 127–135. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21587-2_14CrossRefGoogle Scholar
  19. 19.
    Salti, S., Petrelli, A., Tombari, F., Fioraio, N., Stefano, L.D.: Traffic sign detection via interest region extraction. Pattern Recogn. 48(4), 1039–1049 (2015)CrossRefGoogle Scholar
  20. 20.
    Sánchez-Gutiérrez, M.E., Albornoz, E.M., Martinez-Licona, F., Rufiner, H.L., Goddard, J.: Deep learning for emotional speech recognition. In: Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Olvera-Lopez, J.A., Salas-Rodríguez, J., Suen, C.Y. (eds.) MCPR 2014. LNCS, vol. 8495, pp. 311–320. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07491-7_32CrossRefGoogle Scholar
  21. 21.
    Starostenko, O., Cruz-Perez, C., Uceda-Ponga, F., Alarcon-Aquino, V.: Breaking text-based captchas with variable word and character orientation. Pattern Recogn. 48(4), 1101–1112 (2015)CrossRefGoogle Scholar
  22. 22.
    Sucar, L.E., Bielza, C., Morales, E.F., Hernandez-Leal, P., Zaragoza, J.H., Larrañaga, P.: Multi-label classification with bayesian network-based chain classifiers. Pattern Recogn. Lett. 41, 14–22 (2014). Supervised and Unsupervised Classification Techniques and Their ApplicationsCrossRefGoogle Scholar
  23. 23.
    Zhao, X., Evans, N., Dugelay, J.L.: A subspace co-training framework for multi-view clustering. Pattern Recogn. Lett. 41, 73–82 (2014). Supervised and Unsupervised Classification Techniques and Their ApplicationsCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Tecnologico de MonterreyPueblaMexico
  2. 2.Tecnologico de MonterreyAtizapánMexico
  3. 3.Instituto Nacional de Astrofísica, Óptica y ElectrónicaPueblaMexico

Personalised recommendations