Advertisement

Automatic Contrast Enhancement with Differential Evolution for Leukemia Cell Identification

  • R. Ochoa-MontielEmail author
  • O. Flores-Castillo
  • Humberto Sossa
  • Gustavo Olague
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11524)

Abstract

Image enhancement techniques are needed to decrease the negative effects of blur or unwanted noise in image processing. In biomedical images, the quality of images is very important to achieve an adequate identification to detection or diagnosis purposes. This paper addresses the use of contrast enhancement to facilitate the identification of leukemia in blood cell images. Differential evolution algorithm is used to get parameters required to apply contrast enhancement specifically in the interest region in the image, which facilites the posterior identification of leukemic cells. Identification of leukemic cells is accomplished applying an edges extraction and dilatation. From this image, two types of neural networks are used to classify the cells like healthy or leukemic cells. In first experiment, a multilayer perceptron is trained with the backpropagation algorithm using geometric features extracted from image. While in the second, convolutional networks are used. A public dataset of 260 healthy and leukemic cell images, 130 for each type, is used. The proposed contrast enhancement technique shows satisfactory results when obtaining the interest region, facilitating the identification of leukemic cells without additional processing, like image segmentation.

This way, computational resources are decreased. On the other hand, to identify the cell type, images are classified using neural networks achieving an average classification accuracy of \(99.83\%\).

Keywords

Contrast enhancement Differential evolution Leukemia cells 

Notes

Acknowledgements

This research was economically supported in part by the Instituto Politécnico Nacional, Mexico under projects SIP 20190007 and CONACYT 65 (Fronteras de la Ciencia); and in part by the Autonomous University of Tlaxcala, Mexico. R. Ochoa acknowledges CONACYT for the scholarship granted towards pursuing his PhD studies.

References

  1. 1.
    Maxwell, J.C.: A Treatise on Electricity and Magnetism, vol. 2, 3rd edn. Clarendon, Oxford (1892)zbMATHGoogle Scholar
  2. 2.
    Liu, H., Feng, J., Qi, M., Jiang, J., Yan, S.: End-to-end comparative attention networks for person re-identification. IEEE Trans. Image Process. 26(7), 6–13 (2017)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Kervrann, C., Sorzano, C., Acton, S., Marin, J.O., Unser, M.: A guided tour of selected image processing and analysis methods for fluorescence and electron microscopy. IEEE J. Sel. Top. Signal Process. 10(1), 6–30 (2016)CrossRefGoogle Scholar
  4. 4.
    Ma, B., Pu, R., Wu, L., Zhang, S.: Vegetation index differencing for estimating foliar dust in an ultra-low-grade magnetite mining area using landsat imagery. IEEE Access 5(1), 8825–8834 (2017)CrossRefGoogle Scholar
  5. 5.
    Toh, L.B., Mashor, M.Y., Ehkan, P., Rosline, H., Junoh, A.K., Harun, N.H.: Implementation of high dynamic range rendering on acute leukemia slide images using contrast stretching. In: 2016 3rd International Conference on Electronic Design (ICED), pp. 491–496 (2016)Google Scholar
  6. 6.
    Ravindraiah, R., Srinu, M.V.: Quality improvement for analysis of leukemia images through contrast stretch methods. Procedia Eng. 30(1), 475–481 (2012)CrossRefGoogle Scholar
  7. 7.
    Mokhtar, N.R.: Image enhancement techniques using local, global, bright, dark and partial contrast stretching for acute leukemia images. In: World Congress on Engineering, pp. 807–812 (2009)Google Scholar
  8. 8.
    González, R.C., Woods, R.E., Eddins, S.L.: Digital Image Processing Using MATLAB, 2nd edn. McGraw-Hill Education, New York (2011)Google Scholar
  9. 9.
    Suresh, H., Lal, S.: Modified differential evolution algorithm for contrast and brightness enhancement of satellite images. Appl. Soft Comput. 61, 622–641 (2017)CrossRefGoogle Scholar
  10. 10.
    Coelho, L.D.S., Sauer, J.G., Rudek, M.: Differential evolution optimization combined with chaotic sequences for image contrast enhancement. Chaos, Solut. Fractals 42(1), 522–529 (2009)CrossRefGoogle Scholar
  11. 11.
    Salihah, A.N.A., Mashor, M.Y., Harun, N.H., Rosline, H.: Colour image enhancement techniques for acute leukaemia blood cell morphological features. In: 2010 IEEE International Conference on Systems, Man and Cybernetics, pp. 3677–3682 (2010)Google Scholar
  12. 12.
    Toh, L.B., Mashor, M.Y., Ehkan, P., Rosline, H., Junoh, A.K., Harun, N.H.: Implementation of high dynamic range rendering on acute leukemia slide images using contrast stretching, pp. 491–496 (2016)Google Scholar
  13. 13.
    Prince, S.J.D.: Computer Vision: Models, Learning and Inference, 1st edn. Cambridge University Press, Cambridge (2012)CrossRefGoogle Scholar
  14. 14.
    Storn, R., Price, K.V.: Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. Global Optim. 11(1), 341–359 (1997)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Branke, J., Deb, K., Miettinen, K., Slowiński, R.: Multiobjective Optimization. Interactive and Evolutionary Approaches, 1st edn. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-88908-3CrossRefzbMATHGoogle Scholar
  16. 16.
    Grafarend, E.W.: Linear and Nonlinear Models: Fixed Effects, Random Effects, and Mixed Models, 1st edn. Walter de Gruter, Berlin (2006)Google Scholar
  17. 17.
    Labati, R.D., Piuri, V., Scotti, F.: All-IDB: the acute lymphoblastic leukemia image database for image processing (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • R. Ochoa-Montiel
    • 1
    • 2
    Email author
  • O. Flores-Castillo
    • 2
  • Humberto Sossa
    • 1
    • 3
  • Gustavo Olague
    • 4
  1. 1.Centro de Investigación en ComputaciónInstituto Politécnico NacionalMexico CityMexico
  2. 2.Facultad de Ciencias Básicas, Ingeniería y TecnologíaUniversidad Autónoma de TlaxcalaTlaxcalaMexico
  3. 3.Escuela de Ingeniería y CienciasTecnológico de MonterreyZapopanMexico
  4. 4.CICESE Research Center, EvoVision LaboratoryEnsenadaMexico

Personalised recommendations