Advertisement

Estimation of Forest Carbon from Aerial Photogrammetry

  • Dagoberto Pulido
  • Klaus Puettmann
  • Joaquín SalasEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11524)

Abstract

Quantifying tree biomass is a critical process for carbon stock estimation at the stand, landscape, and national levels. A major challenge for forest managers is the amount of effort involved to document carbon storage levels, especially in terms of human labor. In this paper, we propose a method to quantify the amount of carbon in forest stands. In our approach, we obtain aerial images from where we build 3D reconstructions of the terrain. Using the resulting orthomosaics, we identify individual trees and process their point clouds to extract information to estimate tree the height and to infer the diameter, which we employ in allometric equations to compute carbon content. We compare our results with carbon estimates obtained from allometric equations applied to manual tree diameter and height measurements.

Keywords

Tree detection Carbon estimation Deep learning Remote sensing 

Notes

Acknowledgements

Dagoberto Pulido thanks CONACYT for providing a scholarship for his studies. SIP-IPN 20196702 partially funded Joaquín Salas.

References

  1. 1.
    Barker, J., Sarathy, S., Tao, A.: DetectNet: deep neural network for object detection in DIGITS. Nvidia (2016). https://tinyurl.com/detectnet. Accessed 30 Nov 2016
  2. 2.
    Escalona, F., Aldrete, A., Gómez, A., Fierros, A., Cetina, V., Vaquera, H.: Carbon storage in the aboveground biomass of one young Pinus greggii plantation. Rev. Fitotec. Mex. 30 (2007)Google Scholar
  3. 3.
    Fassnacht, F., Latifi, H., Hartig, F.: Using synthetic data to evaluate the benefits of large field plots for forest biomass estimation with LiDAR. Remote Sens. Environ. 213, 115–128 (2018)CrossRefGoogle Scholar
  4. 4.
    Gayon, J.: History of the concept of allometry. Am. Zool. 40(5), 748–758 (2000).  https://doi.org/10.1093/icb/40.5.748CrossRefGoogle Scholar
  5. 5.
    Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. 32(11), 1231–1237 (2013)CrossRefGoogle Scholar
  6. 6.
    Gomes, M., Maillard, P.: Detection of tree crowns in very high spatial resolution images. In: Environmental Applications of Remote Sensing. InTech (2016)Google Scholar
  7. 7.
    Han, S., Kerekes, J.: Overview of passive optical multispectral and hyperspectral image simulation techniques. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10(11), 4794–4804 (2017)CrossRefGoogle Scholar
  8. 8.
    Luyssaert, S., et al.: Old-growth forests as global carbon sinks. Nature 455(7210), 213 (2008)CrossRefGoogle Scholar
  9. 9.
    Mubin, N.A., Nadarajoo, E., Shafri, H.Z.M., Hamedianfar, A.: Young and mature oil palm tree detection and counting using convolutional neural network deep learning method. Int. J. Remote Sens., 1–16 (2019).  https://doi.org/10.1080/01431161.2019.1569282
  10. 10.
    Neumann, M., et al.: Comparison of carbon estimation methods for European forests. Forest Ecol. Manag. 361, 397–420 (2016)CrossRefGoogle Scholar
  11. 11.
    Oono, K., Tsuyuki, S.: Estimating individual tree diameter and stem volume using airborne LiDAR in Saga Prefecture, Japan. Open J. For. 8(02), 205 (2018)Google Scholar
  12. 12.
    Özyeşil, O., Voroninski, V., Basri, R., Singer, A.: A survey of structure from motion. Acta Numer. 26, 305–364 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Picard, N., Saint-Andre, L., Henry, M.: Manual for building tree volume and biomass allometric equations: from field measurement to prediction (2012)Google Scholar
  14. 14.
    Pretzsch, H., Biber, P., Durskỳ, J.: The single tree-based stand simulator SILVA. Forest Ecol. Manag. 162(1), 3–21 (2002)CrossRefGoogle Scholar
  15. 15.
    Priedītis, G., Šmits, I., Arhipova, I., Dag̀is, A., Dubrovskis, D.: Tree diameter models from field and remote sensing data. Math. Mod. Meth. Appl. S 6, 707–714 (2012)Google Scholar
  16. 16.
    Tinkham, W., et al.: Development of height-volume relationships in second growth Abies grandis for use with aerial LiDAR. Can. J. Remote Sens. 42(5), 400–410 (2016)CrossRefGoogle Scholar
  17. 17.
    Ubbens, J., Cieslak, M., Prusinkiewicz, P., Stavness, I.: The use of plant models in deep learning: an application to leaf counting in rosette plants. Plant Methods 14(1), 6 (2018)CrossRefGoogle Scholar
  18. 18.
    Weier, J., Herring, D.: Measuring vegetation (NDVI & EVI) (2000)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dagoberto Pulido
    • 1
  • Klaus Puettmann
    • 2
  • Joaquín Salas
    • 1
    Email author
  1. 1.CICATA QuerétaroInstituto Politécnico NacionalQuerétaroMexico
  2. 2.Oregon State UniversityCorvallisUSA

Personalised recommendations