Skip to main content

MCAS and \(\alpha \)-Light Mass Nuclei Clusters

  • Chapter
  • First Online:
  • 221 Accesses

Abstract

A multi-channel algebraic scattering method has been used to solve coupled sets of Lippmann-Schwinger equations for \(\alpha +\)nucleus systems to find the spectra of the compound systems. Finite charge distributions of both nuclei forming the clusters have been used. Initially, single channel evaluations of the lightest of the \(\alpha + \)nucleus compound systems are considered, namely of \(^{6,7}\)Li, \(^{7}\)Be, and \(^{8}\)Be, and of some of their scattering cross sections. Then, a multi-channel investigation of the spectrum of \(^{10}\)Be as the \(\alpha {+} ^6\)He cluster and the of the scattering of the \(\alpha \) from \(^6\)He are reported. Finally, the low energy spectra of \(^{12}\)C, \(^{16}\)O, and of \(^{20}\)Ne are found with the systems considered as the coupling of an \(\alpha \) particle with low-excitation states of the core nuclei: \(^8\)Be, \(^{12}\)C, and \(^{16}\)O, respectively. Collective models have been used to defined the matrices of the interacting potentials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S. Quaglioni, P. Navrátil, Phys. Rev. Lett. 101, 092501 (2008)

    Google Scholar 

  2. P. Navrátil, S. Quaglioni, Phys. Rev. C 83, 044609 (2011)

    Google Scholar 

  3. G. Hupin, S. Quaglioni, P. Navrátil, Phys. Rev. Lett. 114, 212502 (2015)

    Google Scholar 

  4. A. Deltuva, Phys. Rev. C 74, 064001 (2006)

    Google Scholar 

  5. E. Pollard, H. Margenau, Phys. Rev. 47, 833 (1935)

    Article  ADS  Google Scholar 

  6. S.B. Dubovichenko, Y.N. Uzikov, Phys. Part. Nucl. 42, 251 (2011)

    Google Scholar 

  7. Y.A. Lashko, G.F. Filippov, V.S. Vasileski, Nucl. Phys. A 958, 78 (2017)

    Google Scholar 

  8. P. Fraser, K. Amos, S. Karataglidis, L. Canton, G. Pisent, J.P. Svenne, Eur. Phys. J. A 35, 69 (2008)

    Google Scholar 

  9. L. Canton, P.R. Fraser, J.P. Svenne, K. Amos, S. Karataglidis, D. van der Knijff, Phys. Rev. C 83, 047603 (2011)

    Google Scholar 

  10. K. Amos, L. Canton, G. Pisent, J.P. Svenne, D. van der Knijff, Nucl. Phys. A 728, 65 (2003)

    Google Scholar 

  11. C.W. de Jager, H. de Vries, C. de Vries, At. Data Nucl. Data Tables 14, 479 (1974)

    Google Scholar 

  12. H. de Vries, C.W. de Jager, C. de Vries, At. Data and Nucl. Data Tables 36, 495 (1987)

    Google Scholar 

  13. K. Amos, L. Canton, P.R. Fraser, S. Karataglidis, J.P. Svenne, D. van der Knijff, Eur. Phys. J. A 53, 72 (2017)

    Google Scholar 

  14. D.R. Tilley et al., Nucl. Phys. A 708, 3 (2002)

    Google Scholar 

  15. L. Senhouse, T. Tombrello, Nucl. Phys. 57, 624 (1964)

    Google Scholar 

  16. S.O. Bäckman, O. Sjöberg, A.D. Jackson, Nucl. Phys. A 321, 10 (1979)

    Google Scholar 

  17. G.G. Ohlsen, P.G. Young, Nucl. Phys. 52, 134 (1964)

    Google Scholar 

  18. G. Mani, A. Tarratts, Nucl. Phys. A 107, 624 (1968)

    Google Scholar 

  19. T. Lauritsen, T. Huus, S.G. Nilsson, Phys. Rev. 92, 1501 (1953)

    Article  ADS  Google Scholar 

  20. A. Galonsky et al., Phys. Rev. 98, 586 (1955)

    Article  ADS  Google Scholar 

  21. J.M. Blair, G. Freier, E.E. Lampi, W. Sleator, Phys. Rev. 75, 1678 (1949)

    Article  ADS  Google Scholar 

  22. R.A. Hardekopf et al., Nucl. Phys. A 287, 237 (1977)

    Google Scholar 

  23. L. Stewart, J.E. Brolley, L. Rosen, Phys. Rev. 128, (1962)

    Article  ADS  Google Scholar 

  24. M. Bruno, F. Cannata, M. D’Agostino, C. Maroni, I. Massa, Lett. Nuovo Cim. 29, 265 (1980)

    Google Scholar 

  25. H. Jett, J.J.L. Detch, N. Jarmie, Phys. Rev. C 7(5), 1769 (1971)

    Article  ADS  Google Scholar 

  26. M. Freer et al., Phys. Rev. Lett. 96, 042501 (2006)

    Google Scholar 

  27. M. Ito, K. Kato, K. Ikeda, Phys. Lett. B 588, 43 (2004)

    Google Scholar 

  28. D. Suzuki et al., Phys. Rev. C 87, 054301 (2013)

    Google Scholar 

  29. K. Arai, Phys. Rev. C 69, 014309 (2004)

    Google Scholar 

  30. P. Descouvemont, Nucl. Phys. A 669, 463 (2002)

    Google Scholar 

  31. G. Filippov, Y. Lashko, Phys. Rev. C 70, 064001 (2004)

    Google Scholar 

  32. D.R. Tilley et al., Nucl. Phys. A 745, 155 (2004)

    Google Scholar 

  33. G. Filippov, Y. Lashko, Phys. Part. Nucl. 36, 714 (2005)

    Google Scholar 

  34. Y.A. Lashko, G.F. Filippov, L. Canton, Ukr. J. Phys. 60, 406 (2015)

    Article  Google Scholar 

  35. G. Filippov, Y. Lashko, S.V. Korennov, K. Katō, Few-Body Syst. 33, 173 (2003)

    Google Scholar 

  36. B.N.L. National Nuclear Data Centre. http://www.nndc.bnl.gov/exfor

  37. H. Kamada, S. Oryu, A. Nogga, Phys. Rev. C 62, 034004 (2000)

    Google Scholar 

  38. D. Roubtsov, K.S. Kozier, J.C. Chow, A.J.M. Plompen, S. Kopecki, J.P. Svenne, L. Canton, Nucl. Data Sheets 118, 414 (2014)

    Google Scholar 

  39. D. Dell’Aquila et al., Phys. Rev. C 93, 024611 (2016)

    Google Scholar 

  40. X. Mugeot et al., Phys. Lett. B 718, 441 (2012)

    Google Scholar 

  41. A. Lagoyannis et al., Phys. Lett. B 518, 27 (2001)

    Google Scholar 

  42. Y. Suzuki, Prog. Theor. Phys. 55, 1751 (1976)

    Google Scholar 

  43. Y. Suzuki, Prog. Theor. Phys. 56, 111 (1976)

    Google Scholar 

  44. K. Ikeda, H. Horiuchi, S. Saito, Prog. Theor. Phys. Suppl. 86, 1 (1980)

    Article  ADS  Google Scholar 

  45. M. Libert-Heinemann, D. Baye, P.H. Heenen, Nucl. Phys. A 339, (1980)

    Google Scholar 

  46. H. Yépez-Martinez, M.J. Ermamatov, P.R. Fraser, P.O. Hess, Phys. Rev. C 86, 034309 (2012)

    Google Scholar 

  47. H. Yépez-Martinez, P.R. Fraser, P.O. Hess, G. Lévai, Phys. Rev. C 85, 014316 (2012)

    Google Scholar 

  48. P.R. Fraser, H. Yépez-Martinez, P.O. Hess, G. Lévai, Phys. Rev. C 85, 014317 (2012)

    Google Scholar 

  49. Y. Kanada-En’yo, Phys. Rev. C 89, 024302 (2014)

    Google Scholar 

  50. R.B. Firestone et al., Table of Isotopes, 8th edn. (Wiley, New York, 1996)

    Google Scholar 

  51. D.R. Tilley, H.R. Weller, C.M. Cheves, Nucl. Phys. A 564, 1 (1993)

    Google Scholar 

  52. P. Tischhauser et al., Phys. Rev. C 79, 055803 (2009)

    Google Scholar 

  53. K.U. Kettner et al., Zeit. Phys. A 308, 73 (1982)

    Google Scholar 

  54. L. Canton, G. Pisent, J.P. Svenne, K. Amos, S. Karataglidis, Phys. Rev. Lett. 96, 072502 (2006)

    Google Scholar 

  55. I. Mukha et al., Phys. Rev. C 79, 061301(R) (2009)

    Google Scholar 

  56. I. Mukha et al., Phys. Rev. C 82, 054315 (2010)

    Google Scholar 

  57. J. Demarche, G. Terwagne, J. App. Phys. 100, 124909 (2006)

    Google Scholar 

  58. R.A. Jarjis, J. Nucl. Inst. Meth. B 12, 331 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Karataglidis .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karataglidis, S., Amos, K., Fraser, P.R., Canton, L. (2019). MCAS and \(\alpha \)-Light Mass Nuclei Clusters. In: A New Development at the Intersection of Nuclear Structure and Reaction Theory. Springer, Cham. https://doi.org/10.1007/978-3-030-21070-0_8

Download citation

Publish with us

Policies and ethics