Skip to main content

Loop Diuretic Resistance in a Patient with Acute Heart Failure

  • Chapter
  • First Online:
Cardiorenal Syndrome in Heart Failure

Abstract

Diuretic resistance complicating decongestion during acute heart failure hospitalization is an emerging research topic of interest. Herein, we discuss the issues prohibiting a universal definition for diuretic resistance and discuss the best metrics available to identify and prognosticate outcomes following diuretic resistance. We propose a resistance mechanism-based classification system for loop diuretic resistance: pre-nephron resistance, pre-loop of Henle resistance, loop of Henle resistance, and post-loop of Henle resistance. Within this classification system, we discuss the current relevance of historical paradigms of diuretic resistance from other patient populations and limitations in automatically applying these concepts to patients with heart failure. We provide a review of recent diuretic resistance research performed in specific heart failure cohorts and interpret these results in the context of historical literature. We conclude with a discussion of mechanism-based treatment options to restore diuretic efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nieminen MS, Brutsaert D, Dickstein K, et al. EuroHeart Failure Survey II (EHFS II): a survey on hospitalized acute heart failure patients: description of population. Eur Heart J. 2006;27:2725–36.

    Article  PubMed  Google Scholar 

  2. Ambrosy AP, Fonarow GC, Butler J, et al. The global health and economic burden of hospitalizations for heart failure: lessons learned from hospitalized heart failure registries. J Am Coll Cardiol. 2014;63:1123–33.

    Article  PubMed  Google Scholar 

  3. Fonarow GC, Heywood JT, Heidenreich PA, Lopatin M, Yancy CW. Temporal trends in clinical characteristics, treatments, and outcomes for heart failure hospitalizations, 2002 to 2004: findings from Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J. 2007;153:1021–8.

    Article  PubMed  Google Scholar 

  4. Chakko S, Woska D, Martinez H, et al. Clinical, radiographic, and hemodynamic correlations in chronic congestive heart failure: conflicting results may lead to inappropriate care. Am J Med. 1991;90:353–9.

    Article  CAS  PubMed  Google Scholar 

  5. Elder A, Japp A, Verghese A. How valuable is physical examination of the cardiovascular system? BMJ. 2016;354:i3309.

    Article  PubMed  Google Scholar 

  6. Drazner MH, Hellkamp AS, Leier CV, et al. Value of clinician assessment of hemodynamics in advanced heart failure: the ESCAPE trial. Circ Heart Fail. 2008;1:170–7.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Stevenson LW, Perloff JK. The limited reliability of physical signs for estimating hemodynamics in chronic heart failure. JAMA. 1989;261:884–8.

    Article  CAS  PubMed  Google Scholar 

  8. Damman K, Testani JM. The kidney in heart failure: an update. Eur Heart J. 2015;36:1437–44.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Testani JM, Kimmel SE, Dries DL, Coca SG. Prognostic importance of early worsening renal function after initiation of angiotensin-converting enzyme inhibitor therapy in patients with cardiac dysfunction. Circ Heart Fail. 2011;4:685–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Michel A, Martin-Perez M, Ruigomez A, Garcia Rodriguez LA. Incidence and risk factors for severe renal impairment after first diagnosis of heart failure: a cohort and nested case-control study in UK general practice. Int J Cardiol. 2016;207:252–7.

    Article  PubMed  Google Scholar 

  11. Cooper LB, Mentz RJ, Gallup D, et al. Serum bicarbonate in acute heart failure: relationship to treatment strategies and clinical outcomes. J Card Fail. 2016;22:738–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ronco C, Haapio M, House AA, Anavekar N, Bellomo R. Cardiorenal syndrome. J Am Coll Cardiol. 2008;52:1527–39.

    Article  PubMed  Google Scholar 

  13. Nohria A, Hasselblad V, Stebbins A, et al. Cardiorenal interactions: insights from the ESCAPE trial. J Am Coll Cardiol. 2008;51:1268–74.

    Article  PubMed  Google Scholar 

  14. Mullens W, Abrahams Z, Francis GS, et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol. 2009;53:589–96.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lala A, McNulty SE, Mentz RJ, et al. Relief and recurrence of congestion during and after hospitalization for acute heart failure: insights from diuretic optimization strategy evaluation in acute decompensated heart failure (DOSE-AHF) and cardiorenal rescue study in acute decompensated heart failure (CARESS-HF). Circ Heart Fail. 2015;8:741–8.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kociol RD, McNulty SE, Hernandez AF, et al. Markers of decongestion, dyspnea relief, and clinical outcomes among patients hospitalized with acute heart failure. Circ Heart Fail. 2013;6:240–5.

    Article  CAS  PubMed  Google Scholar 

  17. Neuberg GW, Miller AB, O’Connor CM, et al. Diuretic resistance predicts mortality in patients with advanced heart failure. Am Heart J. 2002;144:31–8.

    Article  PubMed  Google Scholar 

  18. Testani JM, Cappola TP, Brensinger CM, Shannon RP, Kimmel SE. Interaction between loop diuretic-associated mortality and blood urea nitrogen concentration in chronic heart failure. J Am Coll Cardiol. 2011;58:375–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yilmaz MB, Gayat E, Salem R, et al. Impact of diuretic dosing on mortality in acute heart failure using a propensity-matched analysis. Eur J Heart Fail. 2011;13:1244–52.

    Article  CAS  PubMed  Google Scholar 

  20. Testani JM, Brisco MA, Turner JM, et al. Loop diuretic efficiency: a metric of diuretic responsiveness with prognostic importance in acute decompensated heart failure. Circ Heart Fail. 2014;7:261–70.

    Article  CAS  PubMed  Google Scholar 

  21. Ambrosy AP, Cerbin LP, Armstrong PW, et al. Body weight change during and after hospitalization for acute heart failure: patient characteristics, markers of congestion, and outcomes: findings from the ASCEND-HF trial. JACC Heart Fail. 2017;5:1–13.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Testani JM, Brisco MA, Kociol RD, et al. Substantial discrepancy between fluid and weight loss during acute decompensated heart failure treatment. Am J Med. 2015;128:776–83 e4.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zile MR, Bennett TD, St John Sutton M, et al. Transition from chronic compensated to acute decompensated heart failure: pathophysiological insights obtained from continuous monitoring of intracardiac pressures. Circulation. 2008;118:1433–41.

    Article  PubMed  Google Scholar 

  24. Chaudhry SI, Wang Y, Concato J, Gill TM, Krumholz HM. Patterns of weight change preceding hospitalization for heart failure. Circulation. 2007;116:1549–54.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Verbrugge FH, Nijst P, Dupont M, Penders J, Tang WH, Mullens W. Urinary composition during decongestive treatment in heart failure with reduced ejection fraction. Circ Heart Fail. 2014;7:766–72.

    Article  CAS  PubMed  Google Scholar 

  26. Testani JM, Hanberg JS, Cheng S, et al. Rapid and highly accurate prediction of poor loop diuretic natriuretic response in patients with heart failure. Circ Heart Fail. 2016;9:e002370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. John KA, Cogswell ME, Campbell NR, et al. Accuracy and usefulness of select methods for assessing complete collection of 24-hour urine: a systematic review. J Clin Hypertens (Greenwich). 2016;18:456–67.

    Article  CAS  Google Scholar 

  28. Nabavizadeh P, Ghadermarzi S, Fakhri M. A new method to make 24-hour urine collection more convenient: a validity study. Int J Nephrol. 2014;2014:718147.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Brinkley DM Jr, Burpee LJ, Chaudhry SP, et al. Spot urine sodium as triage for effective diuretic infusion in an ambulatory heart failure unit. J Card Fail. 2018;24:349–54.

    Article  CAS  PubMed  Google Scholar 

  30. Singh D, Shrestha K, Testani JM, et al. Insufficient natriuretic response to continuous intravenous furosemide is associated with poor long-term outcomes in acute decompensated heart failure. J Card Fail. 2014;20:392–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Patarroyo M, Wehbe E, Hanna M, et al. Cardiorenal outcomes after slow continuous ultrafiltration therapy in refractory patients with advanced decompensated heart failure. J Am Coll Cardiol. 2012;60:1906–12.

    Article  PubMed  Google Scholar 

  32. Felker GM, Mentz RJ. Diuretics and ultrafiltration in acute decompensated heart failure. J Am Coll Cardiol. 2012;59:2145–53.

    Article  CAS  PubMed  Google Scholar 

  33. Mentz RJ, Stevens SR, DeVore AD, et al. Decongestion strategies and renin-angiotensin-aldosterone system activation in acute heart failure. JACC Heart Fail. 2015;3:97–107.

    Article  PubMed  Google Scholar 

  34. Hasselblad V, Gattis Stough W, Shah MR, et al. Relation between dose of loop diuretics and outcomes in a heart failure population: results of the ESCAPE trial. Eur J Heart Fail. 2007;9:1064–9.

    Article  CAS  PubMed  Google Scholar 

  35. Hanberg JS, Tang WHW, Wilson FP, et al. An exploratory analysis of the competing effects of aggressive decongestion and high-dose loop diuretic therapy in the DOSE trial. Int J Cardiol. 2017;241:277–82.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Felker GM, Lee KL, Bull DA, et al. Diuretic strategies in patients with acute decompensated heart failure. N Engl J Med. 2011;364:797–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ellison DH, Felker GM. Diuretic treatment in heart failure. N Engl J Med. 2017;377:1964–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brater DC. Diuretic therapy. N Engl J Med. 1998;339:387–95.

    Article  CAS  PubMed  Google Scholar 

  39. Wilcox CS. New insights into diuretic use in patients with chronic renal disease. J Am Soc Nephrol. 2002;13:798–805.

    PubMed  Google Scholar 

  40. Beermann B, Midskov C. Reduced bioavailability and effect of furosemide given with food. Eur J Clin Pharmacol. 1986;29:725–7.

    Article  CAS  PubMed  Google Scholar 

  41. Phakdeekitcharoen B, Boonyawat K. The added-up albumin enhances the diuretic effect of furosemide in patients with hypoalbuminemic chronic kidney disease: a randomized controlled study. BMC Nephrol. 2012;13:92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Loon NR, Wilcox CS, Unwin RJ. Mechanism of impaired natriuretic response to furosemide during prolonged therapy. Kidney Int. 1989;36:682–9.

    Article  CAS  PubMed  Google Scholar 

  43. McCrindle JL, Li Kam Wa TC, Barron W, Prescott LF. Effect of food on the absorption of frusemide and bumetanide in man. Br J Clin Pharmacol. 1996;42:743–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nakahama H, Orita Y, Yamazaki M, et al. Pharmacokinetic and pharmacodynamic interactions between furosemide and hydrochlorothiazide in nephrotic patients. Nephron. 1988;49:223–7.

    Article  CAS  PubMed  Google Scholar 

  45. Bock JS, Gottlieb SS. Cardiorenal syndrome: new perspectives. Circulation. 2010;121:2592–600.

    Article  PubMed  Google Scholar 

  46. Gottlieb SS, Stebbins A, Voors AA, et al. Effects of nesiritide and predictors of urine output in acute decompensated heart failure: results from ASCEND-HF. J Am Coll Cardiol. 2013;62:1177–83.

    Article  CAS  PubMed  Google Scholar 

  47. Cuffe MS, Califf RM, Adams KF Jr, et al. Short-term intravenous milrinone for acute exacerbation of chronic heart failure: a randomized controlled trial. JAMA. 2002;287:1541–7.

    Article  CAS  PubMed  Google Scholar 

  48. Chen HH, Anstrom KJ, Givertz MM, et al. Low-dose dopamine or low-dose nesiritide in acute heart failure with renal dysfunction: the ROSE acute heart failure randomized trial. JAMA. 2013;310:2533–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Packer M, O’Connor C, McMurray JJV, et al. Effect of ularitide on cardiovascular mortality in acute heart failure. N Engl J Med. 2017;376:1956–64.

    Article  CAS  PubMed  Google Scholar 

  50. Teerlink JR, Cotter G, Davison BA, et al. Serelaxin, recombinant human relaxin-2, for treatment of acute heart failure (RELAX-AHF): a randomised, placebo-controlled trial. Lancet. 2013;381:29–39.

    Article  CAS  PubMed  Google Scholar 

  51. Chen HH, Redfield MM, Nordstrom LJ, Cataliotti A, Burnett JC Jr. Angiotensin II AT1 receptor antagonism prevents detrimental renal actions of acute diuretic therapy in human heart failure. Am J Physiol Renal Physiol. 2003;284:F1115–9.

    Article  CAS  PubMed  Google Scholar 

  52. Kula AJ, Hanberg JS, Wilson FP, et al. Influence of titration of neurohormonal antagonists and blood pressure reduction on renal function and decongestion in decompensated heart failure. Circ Heart Fail. 2016;9:e002333.

    Article  CAS  PubMed  Google Scholar 

  53. Guazzi MD, Agostoni P, Perego B, et al. Apparent paradox of neurohumoral axis inhibition after body fluid volume depletion in patients with chronic congestive heart failure and water retention. Br Heart J. 1994;72:534–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Torsemide [package insert]. Roche pharmaceuticals IN, NJ.; April 2003.

    Google Scholar 

  55. Furosemide [package insert]. Sanofi-aventis L, Bridgewater, NJ; November 2012.

    Google Scholar 

  56. Bumetanide [package insert]. Bedford Pharmaceuticals I, Bedford, OH.; February 2010.

    Google Scholar 

  57. Arques S, Ambrosi P. Human serum albumin in the clinical syndrome of heart failure. J Card Fail. 2011;17:451–8.

    Article  CAS  PubMed  Google Scholar 

  58. Chalasani N, Gorski JC, Horlander JC Sr, et al. Effects of albumin/furosemide mixtures on responses to furosemide in hypoalbuminemic patients. J Am Soc Nephrol. 2001;12:1010–6.

    CAS  PubMed  Google Scholar 

  59. Elwell RJ, Spencer AP, Eisele G. Combined furosemide and human albumin treatment for diuretic-resistant edema. Ann Pharmacother. 2003;37:695–700.

    Article  CAS  PubMed  Google Scholar 

  60. Bleske BE, Clarke MM, Wu A, Dorsch MP. The effect of continuous infusion loop diuretics in patients with acute decompensated heart failure with hypoalbuminemia. J Cardiovasc Pharmacol Ther. 2013;18:334–7.

    Article  CAS  PubMed  Google Scholar 

  61. Grodin JL, Lala A, Stevens SR, et al. Clinical implications of serum albumin levels in acute heart failure: insights from DOSE-AHF and ROSE-AHF. J Card Fail. 2016;22:884–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nijst P, Verbrugge FH, Grieten L, et al. The pathophysiological role of interstitial sodium in heart failure. J Am Coll Cardiol. 2015;65:378–88.

    Article  CAS  PubMed  Google Scholar 

  63. Ellison DH. Diuretic therapy and resistance in congestive heart failure. Cardiology. 2001;96:132–43.

    Article  CAS  PubMed  Google Scholar 

  64. Gupta D, Georgiopoulou VV, Kalogeropoulos AP, et al. Dietary sodium intake in heart failure. Circulation. 2012;126:479–85.

    Article  CAS  PubMed  Google Scholar 

  65. Paterna S, Di Pasquale P, Parrinello G, et al. Effects of high-dose furosemide and small-volume hypertonic saline solution infusion in comparison with a high dose of furosemide as a bolus, in refractory congestive heart failure. Eur J Heart Fail. 2000;2:305–13.

    Article  CAS  PubMed  Google Scholar 

  66. Paterna S, Di Pasquale P, Parrinello G, et al. Changes in brain natriuretic peptide levels and bioelectrical impedance measurements after treatment with high-dose furosemide and hypertonic saline solution versus high-dose furosemide alone in refractory congestive heart failure: a double-blind study. J Am Coll Cardiol. 2005;45:1997–2003.

    Article  CAS  PubMed  Google Scholar 

  67. Licata G, Di Pasquale P, Parrinello G, et al. Effects of high-dose furosemide and small-volume hypertonic saline solution infusion in comparison with a high dose of furosemide as bolus in refractory congestive heart failure: long-term effects. Am Heart J. 2003;145:459–66.

    Article  CAS  PubMed  Google Scholar 

  68. Gandhi S, Mosleh W, Myers RB. Hypertonic saline with furosemide for the treatment of acute congestive heart failure: a systematic review and meta-analysis. Int J Cardiol. 2014;173:139–45.

    Article  PubMed  Google Scholar 

  69. Wilson DR, Honrath U, Sonnenberg H. Furosemide action on collecting ducts: effect of prostaglandin synthesis inhibition. Am J Phys. 1983;244:F666–73.

    CAS  Google Scholar 

  70. Nies AS, Gal J, Fadul S, Gerber JG. Indomethacin-furosemide interaction: the importance of renal blood flow. J Pharmacol Exp Ther. 1983;226:27–32.

    CAS  PubMed  Google Scholar 

  71. Shem S. The house of god. London: Bodley Head; 1979.

    Google Scholar 

  72. Sabatine MS, Massachusetts General Hospital. Pocket medicine. Sixth edition. ed. Philadelphia, PA: Wolters Kluwer; 2017

    Google Scholar 

  73. Ter Maaten JM, Rao VS, Hanberg JS, et al. Renal tubular resistance is the primary driver for loop diuretic resistance in acute heart failure. Eur J Heart Fail. 2017;19:1014–22.

    Article  PubMed  CAS  Google Scholar 

  74. Kirchner KA, Voelker JR, Brater DC. Intratubular albumin blunts the response to furosemide-A mechanism for diuretic resistance in the nephrotic syndrome. J Pharmacol Exp Ther. 1990;252:1097–101.

    CAS  PubMed  Google Scholar 

  75. Kirchner KA, Voelker JR, Brater DC. Binding inhibitors restore furosemide potency in tubule fluid containing albumin. Kidney Int. 1991;40:418–24.

    Article  CAS  PubMed  Google Scholar 

  76. Green TP, Mirkin BL. Resistance of proteinuric rats to furosemide: urinary drug protein binding as a determinant of drug effect. Life Sci. 1980;26:623–30.

    Article  CAS  PubMed  Google Scholar 

  77. Charokopos A, Hanberg JS, Rao V, et al. Urine and serum albumin are not major determinants of diuretic resistance in heart failure. J Card Fail. 2016;22:S17.

    Article  Google Scholar 

  78. Agarwal R, Gorski JC, Sundblad K, Brater DC. Urinary protein binding does not affect response to furosemide in patients with nephrotic syndrome. J Am Soc Nephrol. 2000;11:1100–5.

    CAS  PubMed  Google Scholar 

  79. Dormans TP, van Meyel JJ, Gerlag PG, Tan Y, Russel FG, Smits P. Diuretic efficacy of high dose furosemide in severe heart failure: bolus injection versus continuous infusion. J Am Coll Cardiol. 1996;28:376–82.

    Article  CAS  PubMed  Google Scholar 

  80. Gallagher KL, Jones JK. Furosemide-induced ototoxicity. Ann Intern Med. 1979;91:744–5.

    Article  CAS  PubMed  Google Scholar 

  81. Cox ZL, Lenihan DJ. Loop diuretic resistance in heart failure: resistance etiology-based strategies to restoring diuretic efficacy. J Card Fail. 2014;20:611–22.

    Article  CAS  PubMed  Google Scholar 

  82. Felker GM, O’Connor CM, Braunwald E. Loop diuretics in acute decompensated heart failure: necessary? Evil? A necessary evil? Circ Heart Fail. 2009;2:56–62.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Rao VS, Planavsky N, Hanberg JS, et al. Compensatory distal reabsorption drives diuretic resistance in human heart failure. J Am Soc Nephrol. 2017;28:3414–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ellison DH. The physiologic basis of diuretic synergism: its role in treating diuretic resistance. Ann Intern Med. 1991;114:886–94.

    Article  CAS  PubMed  Google Scholar 

  85. Stanton BA, Kaissling B. Adaptation of distal tubule and collecting duct to increased Na delivery. II. Na+ and K+ transport. Am J Phys. 1988;255:F1269–75.

    CAS  Google Scholar 

  86. Stanton BA, Kaissling B. Regulation of renal ion transport and cell growth by sodium. Am J Phys. 1989;257:F1–10.

    Article  CAS  Google Scholar 

  87. Brisco-Bacik MA, Ter Maaten JM, Houser SR, et al. Outcomes associated with a strategy of adjuvant metolazone or high-dose loop diuretics in acute decompensated heart failure: a propensity analysis. J Am Heart Assoc. 2018;7(18):e009149.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Bart BA, Goldsmith SR, Lee KL, et al. Ultrafiltration in decompensated heart failure with cardiorenal syndrome. N Engl J Med. 2012;367:2296–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jentzer JC, DeWald TA, Hernandez AF. Combination of loop diuretics with thiazide-type diuretics in heart failure. J Am Coll Cardiol. 2010;56:1527–34.

    Article  CAS  PubMed  Google Scholar 

  90. Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;128(16):e240–e327.

    Google Scholar 

  91. Channer KS, McLean KA, Lawson-Matthew P, Richardson M. Combination diuretic treatment in severe heart failure: a randomised controlled trial. Br Heart J. 1994;71:146–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Knauf H, Mutschler E. Diuretic effectiveness of hydrochlorothiazide and furosemide alone and in combination in chronic renal failure. J Cardiovasc Pharmacol. 1995;26:394–400.

    Article  CAS  PubMed  Google Scholar 

  93. Fliser D, Schroter M, Neubeck M, Ritz E. Coadministration of thiazides increases the efficacy of loop diuretics even in patients with advanced renal failure. Kidney Int. 1994;46:482–8.

    Article  CAS  PubMed  Google Scholar 

  94. Sica DA. Metolazone and its role in edema management. Congest Heart Fail. 2003;9:100–5.

    Article  CAS  PubMed  Google Scholar 

  95. Metolazone [package insert]; Mylan Pharmaceuticals Inc; Morgantown W. October 2004.

    Google Scholar 

  96. Kissling KT, Pickworth KK. Comparison of the effects of combination diuretic therapy with oral hydrochlorothiazide or intravenous chlorothiazide in patients receiving intravenous furosemide therapy for the treatment of heart failure. Pharmacotherapy. 2014;34:882–7.

    Article  CAS  PubMed  Google Scholar 

  97. Goodman LS, Brunton LL, Chabner B, Knollmann BC. Goodman & Gilman’s the pharmacological basis of therapeutics. 12th ed. New York: McGraw-Hill; 2011.

    Google Scholar 

  98. Gines P, Cardenas A, Arroyo V, Rodes J. Management of cirrhosis and ascites. N Engl J Med. 2004;350:1646–54.

    Article  CAS  PubMed  Google Scholar 

  99. European Association for the Study of the L. EASL clinical practice guidelines on the management of ascites, spontaneous bacterial peritonitis, and hepatorenal syndrome in cirrhosis. J Hepatol. 2010;53:397–417.

    Article  Google Scholar 

  100. Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999;341:709–17.

    Article  CAS  PubMed  Google Scholar 

  101. Bansal S, Lindenfeld J, Schrier RW. Sodium retention in heart failure and cirrhosis: potential role of natriuretic doses of mineralocorticoid antagonist? Circ Heart Fail. 2009;2:370–6.

    Article  CAS  PubMed  Google Scholar 

  102. Butler J, Hernandez AF, Anstrom KJ, et al. Rationale and design of the ATHENA-HF Trial: aldosterone targeted neurohormonal combined with natriuresis therapy in heart failure. JACC Heart Fail. 2016;4:726–35.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Butler J, Anstrom KJ, Felker GM, et al. Efficacy and safety of spironolactone in acute heart failure: the ATHENA-HF randomized clinical trial. JAMA Cardiol. 2017;2:950–8.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Konstam MA, Gheorghiade M, Burnett JC Jr, et al. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST Outcome Trial. JAMA. 2007;297:1319–31.

    Article  CAS  PubMed  Google Scholar 

  105. Matsue Y, Suzuki M, Torii S, et al. Clinical effectiveness of tolvaptan in patients with acute heart failure and renal dysfunction. J Card Fail. 2016;22:423–32.

    Article  CAS  PubMed  Google Scholar 

  106. Felker GM, Mentz RJ, Cole RT, et al. Efficacy and safety of tolvaptan in patients hospitalized with acute heart failure. J Am Coll Cardiol. 2017;69:1399–406.

    Article  CAS  PubMed  Google Scholar 

  107. Konstam MA, Kiernan M, Chandler A, et al. Short-term effects of tolvaptan in patients with acute heart failure and volume overload. J Am Coll Cardiol. 2017;69:1409–19.

    Article  CAS  PubMed  Google Scholar 

  108. Verbrugge FH, Dupont M, Bertrand PB, et al. Determinants and impact of the natriuretic response to diuretic therapy in heart failure with reduced ejection fraction and volume overload. Acta Cardiol. 2015;70:265–73.

    Article  PubMed  Google Scholar 

  109. Acetazolamide in Decompensated Heart Failure With Volume OveRload (ADVOR). 2018. Accessed June 2018, at https://clinicaltrials.gov/ct2/show/NCT03505788?term=mullens+acetazolamide&cond=heart+failure&rank=1.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey M. Testani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cox, Z.L., Testani, J.M. (2020). Loop Diuretic Resistance in a Patient with Acute Heart Failure. In: Tang, W., Verbrugge, F., Mullens, W. (eds) Cardiorenal Syndrome in Heart Failure. Springer, Cham. https://doi.org/10.1007/978-3-030-21033-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21033-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21032-8

  • Online ISBN: 978-3-030-21033-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics