Skip to main content

Indoor Image Recognition and Classification via Deep Convolutional Neural Network

  • Conference paper
  • First Online:

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 146))

Abstract

Indoor navigation (or way finding) still presents a great challenge for autonomous robotic systems and for visually impaired people (VIP). Indeed, the VIP is often enabling to see visual cues such as informational signs, landmarks or geometrical shapes. A Deep Convolution Neural Network (DCNN) has been proven to be highly effective and has achieved an outstanding success comparing to other techniques in object recognition. This paper proposes a robust approach for objects’ classification using a DCNN model. Experimental results in real indoor images with natural illumination (the MCIn-door 20000 dataset) show that the proposed DCNN model achieves the accuracy of 93.7% in objects classification.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)

    Article  Google Scholar 

  2. Mei, S., Yang, H., Yin, Z.P.: Discriminative feature representation for image classification via multimodal multitask deep neural networks. J. Electron. Imaging 26(1), 013023 (2017)

    Article  Google Scholar 

  3. Nan, L.L., Xie, K., Sharf, A.: A search-classify approach for cluttered indoor scene understanding. ACM Trans. Graph. 31(6), Article no. 137 (2012)

    Article  Google Scholar 

  4. Wang, H.Y., Gould, S., Roller, D.: Discriminative learning with latent variables for cluttered indoor scene under-standing. Commun. ACM 56(4), 92–99 (2013)

    Article  Google Scholar 

  5. Husain, F., Schulz, H., Dellen, B., Torras, C., Behnke, S.: Combining semantic and geometric features for object class segmentation of indoor scenes. IEEE Robot. Autom. Lett. 2(1), 49–55 (2017)

    Article  Google Scholar 

  6. Jiang, L.X., Koch, A., Zell, A.: Object recognition and tracking for indoor robots using an RGB-D sensor. In: Proceedings of the 13th International Conference IAS-13 on Intelligent Autonomous Systems 13, pp. 859–871. Springer, Paris (2016)

    Google Scholar 

  7. Chae, H.W., Park, C., Yu, H., Song, J.B.: Object recognition for SLAM in floor environments using a depth sensor. In: 13th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 405–410. IEEE, Xian (2016)

    Google Scholar 

  8. Blum, M., Springenberg, J.T., Wülfing, J., Riedmiller, M.: A learned feature descriptor for object recognition in RGB-D data. In: Robotics and Automation (ICRA), 2012 IEEE International Conference on, pp. 1298–1303 (2012)

    Google Scholar 

  9. Schwarz, M., Schulz, H., Behnke, S.: RGB-D object recognition and pose estimation based on pre-trained convolutional neural network features. In: 26th IEEE International Conference on Robotics and Automation (ICRA), pp. 1329–1335. Washington (2015)

    Google Scholar 

  10. Eitel, J., Springenberg, T., Spinello, L., Riedmiller, M., Burgard, W.: Multimodal deep learning for robust RGB-D object recognition. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 681–687. IEEE, Madrid (2015)

    Google Scholar 

  11. Gupta, S., Girshick, R., Arbeláez, P., Malik, J.: Learning rich features from RGB-D images for object detection and segmentation. In: European Conference on Computer Vision, ECCV 2014, pp. 345–360. Springer International Publishing, Zurich (2014)

    Chapter  Google Scholar 

  12. Bianco, S., Celona, L., Schettini, R.: Robust smile detection using convolutional neural networks. J. Electron. Imaging 25(6), 063002 (2016)

    Article  Google Scholar 

  13. Asif, U., Bennamoun, M., Sohel, F.A.: RGB-D object recognition and grasp detection using hierarchical cascaded forests. IEEE Trans. Robot. 33(3), 547–564 (2017)

    Article  Google Scholar 

  14. Ding, X., Luo, Y., Yu, Q., Li, Q., Cheng, Q., et al.: Indoor object recognition using pre-trained convolutional neural network. In: 23rd International Conference on Automation and Computing (ICAC), pp. 1–6. IEEE, Ohio (2017)

    Google Scholar 

  15. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)

    Article  Google Scholar 

  16. Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36, 193–202, 19 (1980)

    Article  Google Scholar 

  17. Yann, L., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  18. Bashiri, F.S., LaRose, E., Peissig, P., Tafti, A.P.: MCIndoor20000: a fully-labeled image dataset to advance indoor objects detection. Data in brief 17, 71–75 (2018)

    Article  Google Scholar 

  19. Olga, R., Deng, J., Hao, S., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)

    Google Scholar 

  20. Huang, G., Liu, Z., Weinberger, K.Q., Van der Maaten, L.: Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, vol. 1, no. 2, p. 3. IEEE, Hawaii (2017)

    Google Scholar 

  21. Tensorflow a deep learning framework. https://www.tensorflow.org. Last accessed 21 Sept 2018

  22. Nvidia digits system for deep learning model implementation on Nvidia GPU https://developer.nvidia.com/digits. Last accessed 21 Sept 2018

  23. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations, pp. 1–13 (2015)

    Google Scholar 

  24. Sutskever, I., Martens, J., Dahl, G.E., Hinton, G.: On the importance of initialization and momentum in deep learning. ICML (3), 28, pp. 1139–1147 (2013)

    Google Scholar 

  25. Kim, D., Chen, T.: Deep neural network for real-time autonomous indoor navigation. arXiv [cs.CV] (2015). http://arxiv.org/abs/1511.04668

  26. Chen, W., Wei, C., Ting, Q., Yimin, Z., Kaijian, W., Gang, W., et al.: Door recognition and deep learning algorithm for visual based robot navigation. In: IEEE International Conference on Ro-botics and Biomimetics (ROBIO 2014). Bali (2014)

    Google Scholar 

  27. Loussaief, S., Abdelkrim, A.: Machine learning framework for image classification. In: 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT), pp. 58–61. IEEE, Hammamet (2016)

    Google Scholar 

  28. Guerfala, M.W., Sifaoui, A., Abdelkrim, A.: Data classification using logarithmic spiral method based on RBF classifiers. In: 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT), pp. 416–421. IEEE, Hammamet (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouna Afif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Afif, M., Ayachi, R., Said, Y., Pissaloux, E., Atri, M. (2020). Indoor Image Recognition and Classification via Deep Convolutional Neural Network. In: Bouhlel, M., Rovetta, S. (eds) Proceedings of the 8th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT’18), Vol.1. SETIT 2018. Smart Innovation, Systems and Technologies, vol 146. Springer, Cham. https://doi.org/10.1007/978-3-030-21005-2_35

Download citation

Publish with us

Policies and ethics