Genomic Selection in Canadian Spruces

  • Yousry A. El-KassabyEmail author
  • Blaise Ratcliffe
  • Omnia Gamal El-Dien
  • Shuzhen Sun
  • Charles Chen
  • Eduardo P. Cappa
  • Ilga M. Porth
Part of the Compendium of Plant Genomes book series (CPG)


The genetic gain of spruce (Picea spp.) breeding programs is impeded by long recurrent selection cycles stemming from biological constraints such as late expression of traits, weak juvenile mature correlations, and late onset of sexual maturity. Genomic selection (GS) is capable of addressing these barriers to improving the rate of genetic gain via early prediction of phenotypes using dense genetic marker arrays. Results from GS studies focused on spruce species in Canada thus far have produced encouraging results to capture additional genetic gain for wood quality, growth, and insect resistance traits either through the re-analysis of existing progeny trials with genomic information or via prediction of phenotypes for untested candidate trees. With the continual improvement of phenotyping technologies and spruce genomic resources, we expect the capability of GS to capture genetic gain to greatly exceed that of traditional pedigree-based selection methods in the future.


Breeding cycle Genetic gain Genetic variance Genome complexity Genomic relationship Prediction accuracies SNP data imputation 


  1. Andrews M (2002) Wood quality measurement-son et lumière. N Z J For Sci 47:19–21Google Scholar
  2. Askew GR, El-Kassaby YA (1994) Estimation of relationship coefficients among progeny derived from wind-pollinated orchard seeds. Theor Appl Genet 88:267–272PubMedGoogle Scholar
  3. Barnard J, Meng XL (1999) Applications of multiple imputation in medical studies: from AIDS to NHANES. Stat Methods Med Res 8:17–36PubMedGoogle Scholar
  4. Beaulieu J, Doerksen T, Clément S, MacKay J, Bousquet J (2014a) Accuracy of genomic selection models in a large population of open-pollinated families in white spruce. Heredity 113:343–352PubMedPubMedCentralGoogle Scholar
  5. Beaulieu J, Doerksen TK, MacKay J, Rainville A, Bousquet J (2014b) Genomic selection accuracies within and between environments and small breeding groups in white spruce. BMC Genomics 15:1048PubMedPubMedCentralGoogle Scholar
  6. Brown GR, Bassoni DL, Gill GP, Fontana JR, Wheeler NC, Megraw RA, Davis MF, Sewell MM, Tuskan GA, Neale DB (2003) Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). III. QTL verification and candidate gene mapping. Genetics 164:1537–1546PubMedPubMedCentralGoogle Scholar
  7. Browning BL, Browning SR (2013) Improving the accuracy and efficiency of identity-by-descent detection in population data. Genetics 194:459–471PubMedPubMedCentralGoogle Scholar
  8. Buerstmayr H, Ban T, Anderson JA (2009) QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breed 128:1–26Google Scholar
  9. Calus MP, Veerkamp RF (2011) Accuracy of multi-trait genomic selection using different methods. Genet Sel Evol 43:26Google Scholar
  10. Cappa EP, El-Kassaby YA, Muñoz F, Garcia MN, Villalba PV, Klápště J, Poltri SNM (2017) Improving accuracy of breeding values by incorporating genomic information in spatial-competition mixed models. Mol Breed 37:125Google Scholar
  11. Cappa EP, El-Kassaby YA, Muñoz F, Garcia MN, Villalba PV, Klápště J, Poltri SNM (2018) Genomic-based multiple-trait evaluation in Eucalyptus grandis using dominant DArT markers. Plant Sci 271:27–33PubMedGoogle Scholar
  12. Chen C, Mitchell SE, Elshire RJ, Buckler ES, El-Kassaby YA (2013) Mining conifers’ mega-genome using rapid and efficient multiplexed high-throughput genotyping-by-sequencing (GBS) SNP discovery platform. Tree Genet Genomes 9:1537–1544Google Scholar
  13. Christensen OF, Lund MS (2010) Genomic prediction when some animals are not genotyped. Genet Sel Evol 42:2PubMedPubMedCentralGoogle Scholar
  14. De La Torre AR, Puiu D, Crepeau MW, Stevens K, Salzberg SL, Langley CH, Neale DB (2019) Genomic architecture of complex traits in loblolly pine. New Phytol 221:1789–1801Google Scholar
  15. Doerksen TK, Herbinger CM (2010) Impact of reconstructed pedigrees on progeny-test breeding values in red spruce. Tree Genet Genomes 9:591–600Google Scholar
  16. El-Kassaby YA (1982) Association between allozyme genotypes and quantitative traits in Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco]. Genetics 101:103–115PubMedPubMedCentralGoogle Scholar
  17. El-Kassaby YA (1995) Evaluation of the tree-improvement delivery system: factors affecting genetic potential. Tree Physiol 15:545–550PubMedGoogle Scholar
  18. El-Kassaby YA, Lstiburek M (2009) Breeding without breeding. Genet Res 91:111–120Google Scholar
  19. El-Kassaby YA, Cappa EP, Liewlaksaneeyanawin C, Klapste J, Lstiburek M (2011) Breeding without breeding: Is a complete pedigree necessary for efficient breeding? PLoS ONE 6:e25737PubMedPubMedCentralGoogle Scholar
  20. El-Kassaby YA, Klápšte J, Guy RD (2012) Breeding without breeding: selection using the genomic best linear unbiased predictor method (GBLUP). New For 43:631–637Google Scholar
  21. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple Genotyping-by-Sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379PubMedPubMedCentralGoogle Scholar
  22. Evans R, Stringer S, Kibblewhite RP (2000) Variation of microfibril angle, density and fibre orientation in twenty-nine Eucalyptus nitens trees. Appita J 53:450–457Google Scholar
  23. Falconer DS, MacKay TF (1969) Introduction to quantitative genetics. Longmans Green, HarlowGoogle Scholar
  24. Fernandes SB, Dias KO, Ferreira DF, Brown PJ (2018) Efficiency of multi-trait, indirect, and trait-assisted genomic selection for improvement of biomass sorghum. Theor Appl Genet 131:747–755PubMedGoogle Scholar
  25. Franceschini T, Longuetaud F, Bontemps J-D, Bouriaud O, Caritey B-D, Leban J-M (2013) Effect of ring width, cambial age, and climatic variables on the within-ring wood density profile of Norway spruce Picea abies (L.) Karst. Trees.
  26. Frazer KA, Ballinger DG, Cox DR et al (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851–861PubMedGoogle Scholar
  27. Frentiu FD, Clegg SM, Chittock J, Burke T, Blows MW, Owens IPF (2008) Pedigree-free animal models: the relatedness matrix reloaded. Proc R Soc B-Biol Sci 275:639–647Google Scholar
  28. Funda T, El-Kassaby YA (2012) Seed orchard genetics. CAB Rev 7:013Google Scholar
  29. Gamal El-Dien O, Ratcliffe B, Klápště J, Chen C, Porth I, El-Kassaby YA (2015) Prediction accuracies for growth and wood attributes of interior spruce in space using genotyping-by-sequencing. BMC Genomics 16:370PubMedPubMedCentralGoogle Scholar
  30. Gamal El-Dien O, Ratcliffe B, Klápště J, Porth I, Chen C, El-Kassaby YA (2016) Implementation of the realized genomic relationship matrix to open-pollinated white spruce family testing for disentangling additive from non-additive genetic effects. G3 -Genes Genomes Genet 6:743–753Google Scholar
  31. Gamal El-Dien O, Ratcliffe B, Klápště J, Porth I, Chen C, El-Kassaby YA (2018) Multi-environment genomic variance decomposition analysis of open-pollinated Interior spruce (Picea glauca x engelmannii). Mol Breed 38:26Google Scholar
  32. Grattapaglia D, Resende M (2010) Genomic selection in forest tree breeding. Tree Genet Genomes 7:241–255Google Scholar
  33. Grattapaglia D, Silva-Junior OB, Resende RT, Cappa EP, Müller PSF, Tan B, Isik F, Ratcliffe R, El-Kassaby YA (2018) Quantitative genetics and genomics coverage to accelerate forest tree breeding. Front Plant Sci 9:1693PubMedPubMedCentralGoogle Scholar
  34. Henderson CR (1976) Simple method for computing inverse of a numerator relationship matrix used in prediction of breeding values. Biometrics 32:69–83Google Scholar
  35. Heslot N, Yang H-P, Sorrells ME, Jannink J-L (2011) Genomic selection in plant breeding: a comparison of models. Crop Sci 52:146–160Google Scholar
  36. Hill WG, Weir BS (2011) Variation in actual relationship as a consequence of Mendelian sampling and linkage. Genet Res 93:47–64Google Scholar
  37. Howie BN, Donnelly P, Marchini J (2009) A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 5:e1000529PubMedPubMedCentralGoogle Scholar
  38. Huang L, Li Y, Singleton AB, Hardy JA, Abecasis G, Rosenberg NA, Scheet P (2009) Genotype-imputation accuracy across worldwide human populations. Am J Hum Genet 84:235–250PubMedPubMedCentralGoogle Scholar
  39. La Mantia J, Klapste J, El-Kassaby YA, Azam S, Guy RD, Douglas CD, Mansfield SD, Hamelin R (2013) Association analysis identifies Melampsora x columbiana poplar leaf rust resistance SNPs. PLoS ONE 8:e78423PubMedPubMedCentralGoogle Scholar
  40. Legarra A, Aguilar I, Misztal I (2009) A relationship matrix including full pedigree and genomic information. J Dairy Sci 92:4656–4663PubMedGoogle Scholar
  41. Lenz PRN, Beaulieu J, Mansfield SD, Clément S, Desponts M, Bousquet J (2017) Factors affecting the accuracy of genomic selection for growth and wood quality traits in an advanced-breeding population of black spruce (Picea mariana). BMC Genomics 18:335PubMedPubMedCentralGoogle Scholar
  42. Lenz PRN, Nadeau S, Mottet M-J et al (2019) Multi-trait genomic selection for weevil resistance, growth, and wood quality in Norway spruce. Evol Appl 00:1–19. Scholar
  43. Lippert C, Quon G, Kang EY, Kadie CM, Listgarten J, Heckerman D (2013) The benefits of selecting phenotype-specific variants for applications of mixed models in genomics. Sci Rep 3:1815PubMedPubMedCentralGoogle Scholar
  44. Marchini J, Howie B (2010) Genotype imputation for genome-wide association studies. Nat Rev Genet 11:499–511PubMedGoogle Scholar
  45. Meuwissen T (2007) Genomic selection: marker-assisted selection on a genome wide scale. J Anim Breed Genet 124:321–322PubMedGoogle Scholar
  46. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829PubMedPubMedCentralGoogle Scholar
  47. McKown AD, Guy RD, Qumme L, Klapste J, La Mantia J, Constabel CP, El-Kassaby YA, Hamelin RC, Zifkin M, Azam MS (2014) Association genetics, geography and ecophysiology link stomatal patterning in Populus trichocarpa with carbon gain and disease resistance trade-offs. New Phytol 23:5771–5790Google Scholar
  48. McKown AD, Klapste J, Guy RD, El-Kassaby YA, Mansfield SD (2018) Ecological genomics of variation in bud-break phenology and mechanisms of response to climate warming in Populus trichocarpa. New Phytol 20:300–316Google Scholar
  49. Misztal I, Legarra A, Aguilar I (2009) Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. J Dairy Sci 92:4648–4655PubMedGoogle Scholar
  50. Muñoz PR, Resende MFR Jr, Gezan S, Resende MD, de los Campos G, Kirst M, Huber D, Peter GF (2014) Unraveling additive from nonadditive effects using genomic relationship matrices. Genetics 198:1759–1768Google Scholar
  51. Pantanowitz A, Marwala T (2009) Missing data imputation through the use of the random forest algorithm. Springer, Berlin, pp 53–62Google Scholar
  52. Pavy N, Gagnon F, Deschênes A, Boyle B, Beaulieu J, Bousquet J (2016) Development of highly reliable in silico SNP resource and genotyping assay from exome capture and sequencing: an example from black spruce (Picea mariana). Mol Ecol Resour 16:588–598PubMedGoogle Scholar
  53. Porth I, Klapste J, Skyba O et al (2013) Genome-wide association mapping for wood characteristics in Populus identifies an array of candidate single nucleotide polymorphisms. New Phytol 200:710–726PubMedGoogle Scholar
  54. Pszczola M, Veerkamp RF, De Haas Y, Wall E, Strabel T, Calus MPL (2013) Effect of predictor traits on accuracy of genomic breeding values for feed intake based on a limited cow reference population. Animal 7:1759–1768PubMedGoogle Scholar
  55. Ratcliffe B, Gamal El-Dien O, Klápště J, Porth I, Chen C, Jaquish B, El-Kassaby YA (2015) A comparison of genomic selection models across time in interior spruce (Picea glauca x engelmannii) using unordered SNP imputation methods. Heredity 115:547–555PubMedPubMedCentralGoogle Scholar
  56. Ratcliffe B, Gamal El-Dien O, Cappa EP, Porth I, Klápště J, Chen C, El-Kassaby YA (2017) Single-step BLUP with varying genotyping effort in open-pollinated Picea glauca. G3-Genes Genomes Genet 7:935Google Scholar
  57. Resende Jr MFR, Munoz P, Resende MDV, Garrick DJ, Fernando RL, Davis JM, Jokela DEJ, Martin TA, Peter GF, Kirts M (2012) Accuracy of genomic selection methods in a standard data set of loblolly pine (Pinus taeda L.). Genetics 190:1503–1510Google Scholar
  58. Rutkoski JE, Poland J, Jannink J-L, Sorrells ME (2013) Imputation of unordered markers and the impact on genomic selection accuracy. G3-Genes Genomes Genet 3:427–439Google Scholar
  59. Schulthess AW, Wang Y, Miedaner T, Wilde P, Reif JC, Zhao Y (2016) Multiple-trait-and selection indices-genomic predictions for grain yield and protein content in rye for feeding purposes. Theor Appl Genet 129:273–287PubMedGoogle Scholar
  60. Sewell MM, Bassoni DL, Megraw RA, Wheeler NC, Neale DB (2000) Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). I. Physical wood properties. Theor Appl Genet 101:1273–1281Google Scholar
  61. Sewell MM, Davis MF, Tuskan GA, Wheeler NC, Elam CC, Bassoni DL, Neale DB (2002) Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). II. Chemical wood properties. Theor Appl Genet 104:214–222PubMedGoogle Scholar
  62. Sun S, Miao Z, Ratcliffe B, Campell P, Pasch B, El-Kassaby YA, Balsundaram B, Chen C (2019) SNP variable selection by generalized graph domination. PLoS ONE 14:e0203242PubMedPubMedCentralGoogle Scholar
  63. Thistlethwaite FR, Ratcliffe B, Klápstě J, Porth I, Chen C, Stoehr MU, El-Kassaby YA (2017) Genomic prediction accuracies in space and time for height and wood density of Douglas-fir using exome capture as the genotyping platform. BMC Genomics 18:930PubMedPubMedCentralGoogle Scholar
  64. Thistlethwaite FR, Ratcliffe B, Klápště J, Porth I, Chen C, Stoehr MU, El-Kassaby YA (2019) Genomic selection of juvenile height across a single generational gap in Douglas-fir. Heredity 122:848–863PubMedPubMedCentralGoogle Scholar
  65. VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423PubMedGoogle Scholar
  66. VanRaden PM, Van Tassell CP, Wiggans GR, Sonstegard TS, Schnabel RD, Taylor JF, Schenkel FS (2009) Reliability of genomic predictions for North American Holstein bulls. J Dairy Sci 92:16–24PubMedGoogle Scholar
  67. Veerkamp RF, Mulder HA, Thompson R, Calus MPL (2011) Genomic and pedigree-based genetic parameters for scarcely recorded traits when some animals are genotyped. J Dairy Sci 94:4189–4197PubMedGoogle Scholar
  68. Visscher PM, Medland SE, Ferreira MAR, Morley KI, Zhu G, Cornes BK, Montgomery GW, Martin NG (2006) Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings. PLoS Genet 2:e41PubMedPubMedCentralGoogle Scholar
  69. White TL, Adams WT, Neale DB (2007) Forest genetics. CABI Publishing, CambridgeGoogle Scholar
  70. Wright S (1922) Coefficients of inbreeding and relationship. Am Nat 56:330–338Google Scholar
  71. Xu S (2003) Advanced statistical methods for estimating genetic variances in plants. Plant Breed Rev 22:113–163Google Scholar
  72. Ying CC, Yanchuk AD (2006) The development of British Columbia’s tree seed transfer guidelines: purpose, concept, methodology, and implementation. For Ecol Manag 227:1–13Google Scholar
  73. Zapata-Valenzuela J, Whetten RW, Neale D, McKeand S, Isik F (2013) Genomic estimated breeding values using genomic relationship matrices in a cloned population of loblolly pine. G3-Genes Genomes Genet 3:909–916Google Scholar
  74. Zobel BJ, Talbert JT (1984) Applied forest tree improvement. Wiley, New YorkGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Yousry A. El-Kassaby
    • 1
    Email author
  • Blaise Ratcliffe
    • 1
  • Omnia Gamal El-Dien
    • 1
  • Shuzhen Sun
    • 1
    • 2
  • Charles Chen
    • 2
  • Eduardo P. Cappa
    • 3
  • Ilga M. Porth
    • 4
  1. 1.Department of Forest and Conservation Sciences, Faculty of ForestryThe University of British ColumbiaVancouverCanada
  2. 2.Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterUSA
  3. 3.Instituto de Recursos Biologicos, Centro de Investigacion en Resursos NaturalesInstituto Nacional de Tecnologis Agropecuaria (IINTA)Buenos AiresArgentina
  4. 4.Départment des Sciences du Bois et de la Forêt, Faculté de Foresterie, de Géographie et GéomatiqueUniversité LavalQuebec CityCanada

Personalised recommendations