Advertisement

Comparative Genomics of Spruce and Other Gymnosperms

  • Amanda R. De la TorreEmail author
Chapter
  • 132 Downloads
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

In contrast to flowering plants, the genomes of gymnosperms are still poorly understood. Current knowledge on the genomic architecture, gene space, and macrostructure of gymnosperm genomes mainly comes from Pinaceae species, in which spruce species (genera with most sequenced genomes to date) had played a significant role. Whereas the accumulation of nuclear genomes’ sequence information has followed a slow pace, the sequencing of chloroplast genomes skyrocketed in the last 10 years, with many spruce species sequenced so far. From the comparison of nuclear, mitochondrial, and chloroplast genomes, we can conclude that they all differ in their genomic macrostructure and rates of sequence evolution. The high structural conservation among species, genera, and families is characteristic of nuclear genomes, whereas chloroplast and mitochondrial genomes show less conserved structures due to genomic arrangements. Finally, Picea species follow trends observed in other gymnosperms and angiosperms, in which rates of sequence evolution are the highest in nuclear DNA, followed by chloroplast and then mitochondrial DNA.

Keywords

Spruce Comparative genomics Sequence evolution Genetic linkage maps 

References

  1. Asaf S, Khan AL, Khan MA, Shahzad R, Lubna, Kang SM, Al-Harrasi A et al (2018) Complete chloroplast genome sequence and comparative analysis of loblolly pine (Pinus taeda L.) with related species. Plos ONE 13(3):e0192966Google Scholar
  2. Bernhardsson C, Vidallis A, Wang X, Scofield DG, Schiffthaler B, Baison J, Street NR, Garcia-Gil MR, Ingvarsson PK (2019) An ultra-dense haploid genetic map for evaluating the highly fragmented genome assembly of Norway spruce (Picea abies). G3: Genes Genomes Genet 9(5):1623–1632Google Scholar
  3. Birol I, Raymond A, Jackman SD, Pleasance S, Coope R, Taylor GA, Yuen MMS, Keeling CI, Brand D, Vandervalk BP, et al (2013) Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics 29:1492–1497Google Scholar
  4. Buschiazzo E, Ritland C, Bohlmann J, Ritland K (2012) Slow but not low: genomic comparisons reveal slower evolutionary rate and higher dN/dS in conifers compared to angiosperms. BMC Evol Biol 12:8Google Scholar
  5. Chaw S-M Chun-Chieh Shih A Wang D Wu Y-W Liu S-M Chou T-Y (2008) The mitochondrial genome of the gymnosperm Cycas taitungensis contains a novel family of short interspersed elements, Bpu sequences, and abundant RNA editing sites. Mol Biol Evol 25:603–615Google Scholar
  6. Chaw SM, Wu SC, Sudianto E (2018) Evolution of gymnosperm plastid genomes. Adv Bot Res 85:195–222Google Scholar
  7. Chen J, Uebbing S, Gyllenstrand N, Lagercrantz U, Lascoux M, Kallman T (2012) Sequencing of the needle transcriptome from Norway spruce (Picea abies Karst L.) reveals lower substitution rates, but similar selective constraints in gymnosperms and angiosperms. BMC Genomics 13:589Google Scholar
  8. Chen J, Hao Z, Xu H, Yang L, Liu G, Shen Y, Zheng C, Zheng W, Cheng T, Shi J (2015) The complete chloroplast genome sequence of the relict woody plant Metasequoia glyptostroboides Hu et Cheng. Front Plant Sci 6:447Google Scholar
  9. Chen L, Li L, Yang G, Qian H, Li M (2018) Characterization of the complete chloroplast genome sequence of Tsuga longibracteata W.C. Cheng (Pinaceae). Conserv Genet Resour.  https://doi.org/10.1007/s12686-017-0974-z
  10. Coombe L, Warren RL, Jackman SD, Yang C, Vandervalk BP, Moore RA, Pleasance S, Coope RJ, Bohlmann J, Holt RA, Jones SJM, Birol I (2016) Assembly of the complete sitka spruce chloroplast genome using 10X genomics Gemcode sequencing data. PLos One 11(9):e0163Google Scholar
  11. De La Torre AR, Birol I, Bousquet J, Ingvarsson PK, Jansson S, Jones SJM, Keeling CI, MacKay J, Nilsson O, Ritland K, Street N, Yanchuk A, Zerbe P, Bohlmann J (2014a) Insights into Conifer Giga-genomes. Plant Physiol 166: 1–9Google Scholar
  12. De La Torre AR, Roberts D, Aitken SN (2014b) Genome-wide admixture and ecological niche modeling reveal the maintenance of species boundaries despite long history of interspecific gene flow. Mol Ecol 23:2046–2059Google Scholar
  13. De La Torre AR, Li Z, Van de Peer Y, Ingvarsson PK (2017) Contrasting rates of molecular evolution and patterns of selection among gymnosperms and flowering plants. Mol Biol Evol 34(6):1363–1377Google Scholar
  14. De La Torre AR, Wilhite B, DB Neale (2019) Environmental genome-wide association reveals climate adaptation is shaped by subtle to moderate allele frequency shifts in loblolly pine. Genome Biol Evol (In Press).  https://doi.org/10.1093/gbe/evz220
  15. De Miguel M, Bartholomé J, Ehrenmann F, Murat F, Moriguchi Y et al (2015) Evidence of intense chromosomal shuffling during conifer evolution. Genome Biol Evol 7:2799–2809.  https://doi.org/10.1093/gbe/evv185
  16. Drouin G, Daoud H, Xia J (2008) Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants. Mol Phylogenet Evol 49:827–831Google Scholar
  17. Guo W, Grewe F, Fan W, Young GJ, Knoop V, Palmer JD, Mower JP (2016) Ginkgo and Welwitschia mitogenomes reveal extreme contrasts in gymnosperm mitochondrial evolution. Mol Biol Evol 33(6):1448–1460.  https://doi.org/10.1093/molbev/msw024
  18. Hall DE, Robert JA, Keeling CI, Domanski D, Quesada AL, Jancsik S, Kuzyk MA, Hamberger B, Borchers CH, Bohlmann J (2011) An integrated genomic, proteomic and biochemical analysis of (+)-3-carene biosynthesis in Sitka spruce (Picea sitchensis) genotypes that are resistant or susceptible to white pine weevil. Plant J 65:936–948Google Scholar
  19. Hanlon VCT, Otto SP, Aitken SN (2019) Somatic mutations substantially increase the per-generation mutation rate in the conifer Picea sitchensis. Evol. Lett. 3–4:348–358Google Scholar
  20. Hao Z, Cheng T, Zheng R, Xu H, Zhou Y, Li M, Lu F, Dong Y, Chen J, Shi J (2016) The complete chloroplast genome sequence of a relict conifer Glyptostrobus pensilis: comparative analysis and insights into dynamics of chloroplast genome rearrangement in Cupressophytes and Pinaceae. PLoS One 11(8):e0161809Google Scholar
  21. Hirao, T; Watanabe A; Kurita M; Kondo T; Takata K (2008) Complete nucleotide sequence of the Cryptomeria japonica D. Don. chloroplast genome and comparative chloroplast genomics: diversified genomic structure of coniferous species. BMC Plant Biol 8(70)Google Scholar
  22. Jackman SD, Warren RL, Gibb EA, Vandervalk BP, Mohamadi H, Chu J, Raymond A, Pleasance S, Coope R et al (2015) Organellar genomes of white spruce (Picea glauca): assembly and annotation. Genome Biol Evol 8:29–41. https://doi.org/10.1093/gbe/evv244
  23. Jackman SD, Coombe L, Warren RL, Kirk H, Trinh E, MacLeod T, Pleasance S, Pandoh P, Zhao Y, Coope RJ, Bousquet J, Bohlmann J, Jones SJM, Birol I (2020) Complete mitochondrial genome of a gymnosperm, Sitka spruce (Picea sitchensis), indicates a complex physical structure. Genome Biol Evol evaa108. https://doi.org/10.1093/gbe/evaa108
  24. Kang BY, Mann IK, Major JE, Rajora OP (2010) Near-saturated and complete genetic linkage map of black spruce (Picea mariana). BMC Genomics 11:515Google Scholar
  25. Li Y, Wang J, Li P, Fan W, Chen Q (2019) The complete chloroplast genome sequence of Picea neoveitchii (Pinaceae: Piceoideae). Mitochondrial DNA Part B 4:1, 448–449.  https://doi.org/10.1080/23802359.2018.1553528
  26. Lin CP, Huang JP, Wu CS, Hsu CY, Chaw SM (2010) Comparative chloroplast genomics reveals the evolution of Pinaceae genera and subfamilies. Genome Biol Evol 2:504–517Google Scholar
  27. Lin CP, Wu CS, Huang YY, Chaw SM (2012) The complete chloroplast genome of Ginkgo biloba reveals the mechanism of inverted repeat contraction. Genome Biol Evol 4(3):374–381.  https://doi.org/10.1093/gbe/evs021
  28. Lin D, Coombe L, Jackman SD, Gagalova KK, Warren RL et al (2019) Complete chloroplast genome sequence of an Engelmann spruce (Picea engelmannii, genotype Se404-851) from western Canada. Microbiol Resour Announcements 8(24):e00382-19Google Scholar
  29. Lind M, Kallman T, Chen J, Ma XF, Bousquet J, Morgante M, Zaina G, Karlsson B, Elfstrand M, Lascoux M, Stenlid J (2014) A Picea abies linkage map based on SNP markers identifies QTLs for four aspects of resistance to Heterobasidion parviporum infection. PLos one 9(7):e101049Google Scholar
  30. Liu H, Cao F, Yin T, Chen Y (2017) A highly dense genetic map for Ginkgo biloba constructed using sequence-based markers. Front Plant Sci 8:1041Google Scholar
  31. Miao J, Tso S, Li J, Xie S, Mao K (2019) The complete chloroplast genome of Juniperus tibetica (Cupressaceae), the conifer that occupies the highest known treeline in the Northern Hemisphere, Mitochondrial DNA Part B, 4(1):609–611. https://doi.org/10.1080/23802359.2018.1561229
  32. Neale DB, Sederoff RR (1989) Paternal inheritance of chloroplast DNA and maternal inheritance of mitochondrial DNA in loblolly pine. Theoret Appl Genet 77:212.  https://doi.org/10.1007/BF00266189
  33. Neale DB, Martinez-Garcia PJ, De La Torre AR, Montanari S, Wei X (2017) Novel insights into tree biology and genome evolution as revealed through genomics. Annu Rev Plant Biol 68:13.1–13.27Google Scholar
  34. Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A et al (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579–584Google Scholar
  35. Palme AE, Pyhajarvi T, Wachowiak W, Savolainen O (2009) Selection on nuclear genes in a Pinus phylogeny. Mol Biol Evol 26(4):893–905Google Scholar
  36. Palmer JD, Stein DB (1986) Conservation of chloroplast genome structure among vascular plants. Curr Genet 10(11):823–833Google Scholar
  37. Pavy N, Pelgas B, Beauseigle S et al (2008) Enhancing genetic mapping of complex genomes through the design of highly-multiplexed SNP arrays: application to the large and unsequenced genomes of white spruce and black spruce. BMC Genomics 9:21Google Scholar
  38. Pavy N, Pelgas B, Laroche J, Rigault P, Isabel N, Bousquet J (2012) A spruce gene map infers ancient plant genome reshuffling and subsequent slow evolution in the gymnosperm lineage leading to extant conifers. BMC Biol 10:84Google Scholar
  39. Pavy N, Lamothe M, Pelgas B, Gagnon F, Birol I, Bohlman J, Mackay J, Isabel N, Bousquet J (2017) A high-resolution reference genetic map positioning 8.8 K genes for the conifer white spruce: structural genomics implications and correspondence with physical distance. Plant J 90:189–213Google Scholar
  40. Pelgas B, Bousquet J, Meirmans PG, Ritland K, Isabel N (2011) QTL mapping in white spruce: gene maps and genomic regions underly- ing adaptive traits across pedigrees, years and environments. BMC Genomics 12:145Google Scholar
  41. Prunier J, Verta JP, MacKay JJ (2016) Conifer genomics and adaptation: at the crossroads of genetic diversity and genome function. New Phytol 209:44–62Google Scholar
  42. Prunier J, Caron S, MacKay JJ (2017a) CNVs into the wild: screening the genomes of conifer trees (Picea spp.) reveals fewer gene copy number variations in hybrids and links to adaptation. BMC Genomics 18:97Google Scholar
  43. Prunier J, Caron S, Lamothe M, Blais S, Bousquet J, Isabel N, MacKay J (2017b) Gene copy number variations in adaptive evolution: the genomic distribution of gen copy number variation revealed by genetic mapping and their adaptive role in an undomesticated species, white spruce (Picea glauca). Mol. Ecol. 26:5989–6001Google Scholar
  44. Richardson AO, Rice DW, Young GJ, Alverson AJ, Palmer JD (2013) The “fossilized” mitochondrial genome of Liriodendron tulipifera: ancestral gene content and order, ancestral editing sites, and extraordinarily low mutation rate. BMC Biol 11:29Google Scholar
  45. Smith DR (2015) Mutation rates in plastid genomes: they are lower than you might think. Genome Biology and Evol 7(5):1227–1234.  https://doi.org/10.1093/gbe/evv069
  46. Strauss SH, Palmer JD, Howe GT, Doerksen AH (1988) Chloroplast genomes of two conifers lack a large inverted repeat and are extensively rearranged. Proc Natl Acad Sci 85(11):3898–3902.  https://doi.org/10.1073/pnas.85.11.3898
  47. Sugiura M (1992) The chloroplast genome. Plant Mol Biol 19(1):149–168. Epub 1992/05/01. PMID: 1600166Google Scholar
  48. Sullivan AR, Eldfjell Y, Schiffthaler B, Delhomme N, Asp T, Hebelstrup KH, Keech O, Oberg L, Moller IM, Arvestad L, Street NR, Wang XR (2019) The mitogenome of Norway spruce and a reappraisal of mitochondrial recombination in plants. http://dx.doi.org/10.1101/682732
  49. Tomonori H, Watanabe A, Kurita M, Kondo T, Takata K (2008) Complete nucleotide sequence of the Cryptomeria japonica D. Don. Chloroplast genome and comparative chloroplast genomics: diversified genomic structure of coniferous species. BMC Plant Biol 8:70Google Scholar
  50. Tsudzuki J, Nakashima K, Tsudzuki T, Hiratsuka J, Shibata M, Wakasugi T, et al (1992) Chloroplast DNA of black pine retains a residual inverted repeat lacking rRNA genes: nucleotide sequences of trnQ, trnK, psbA, trnI and trnH and the absence of rps16. Mol Gen Genet 232(2):206–214. Epub 1992/03/ 01. PMID: 1557027Google Scholar
  51. Yakovlev IA, Asante DKA, Fossdal CG, Junttila O, Johnsen Ø (2011) Differential gene expression related to an epigenetic memory affecting climatic adaptation in Norway spruce. Plant Sci 180:132–139Google Scholar
  52. Yakovlev IA, Carneros E, Lee YK, Olsen JE, Fossdal CG (2016) Transcriptional profiling of epigenetic regulators in somatic embryos during temperature induced formation of an epigenetic memory in Norway spruce. Planta 243:1237–1249Google Scholar
  53. Wang B, Wang X-R (2014) Mitochondrial DNA capture and divergence in Pinus provide new insights into the evolution of the genus. Mol Phylogenet Evol 80:20–30, 783.  https://doi.org/10.1016/j.ympev.2014.07.014
  54. Warren RL, Keeling CI, Yuen MMS, Raymond A, Taylor GA, Vandervalk BP et al (2015) The improved white spruce (Picea glauca) genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism. Plant J 83:189–212Google Scholar
  55. Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058Google Scholar
  56. Wu CS, Wang YN, Liu SM, Chaw SM (2007) Chloroplast genome (cpDNA) of Cycas taitungensis and 56 cp protein-coding genes of Gnetum parvifolium: insights into cp DNA evolution and phylogeny of extant seed plants. Mol Biol Evol 24:1366–1379.  https://doi.org/10.1093/molbev/msm059
  57. Wu CS, Wang YN, Hsu CY, Lin CP, Chaw SM (2011a) Loss of different inverted repeat copies from the chloroplast genomes of Pinaceae and Cupressophytes and influence of heterotachy on the evaluation of gymnosperm phylogeny. Genome Biol Evol 3:1284–1295.  https://doi.org/10.1093/gbe/evr095
  58. Wu CS, Lin CP, Hsu CY, Wang RJ, Chaw SM (2011b) Comparative chloroplast genomes of pinaceae: insights into the mechanism of diversified genomic organizations. Genome Biol Evol 3: 309–319.  https://doi.org/10.1093/gbe/evr026
  59. Wu CS, Chaw SM (2016) Large-scale comparative analysis reveals the mechanisms driving plastomic compaction, reduction, and inversions in conifers II (Cupressophytes). Genome Biology and Evolution 8(12):3740–3750Google Scholar
  60. Yang JC, Joo M, So S, Yi DK et al (2016) The complete plastid genome sequence of Picea jezoensis (Pinaceae: Piceoideae). Mitochondrial DNA Part A 27(5):3761–3763Google Scholar
  61. Zang M, Su Q, Weng Y, Lu L, Zheng X, Ye D, Zheng R et al (2019) Complete chloroplast genome of Fokienia hodginsii (Dunn) Henry et Thomas: Insghts into repeat regions variation and phylogenetic relationships in Cupressophyta. Forests 10:528Google Scholar
  62. Zhu A, Guo W, Jain K, Mower JP (2014) Unprecedented heterogeneity in the synonymous substitution rate within a plant genome. Mol Biol Evol 31:1228–1236Google Scholar
  63. Zimmerman HH, Harms L, Epp LS, Mewes N, Bernhardt S et al (2019) Chloroplast and mitochondrial genetic variation of larches at the Siberian tundra-taiga ecotone revealed by de novo assembly. PLoS One 14(7):e0216966Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of ForestryNorthern Arizona UniversityFlagstaffUSA

Personalised recommendations